Curso de Análisis Real para Economía Escuela de Verano de Bogotá 2022

Exercise 1. Let U be a universe. For any collection X of subsets of U, define

$$\bigcup_{X \in \mathfrak{X}} X = \{ x \in U \mid \exists X \in \mathfrak{X} : x \in X \} \text{ and } \bigcap_{X \in \mathfrak{X}} X = \{ x \in U \mid \forall X \in \mathfrak{X}, x \in X \}.$$

Argue that if $\mathfrak{X} = \varnothing$, then $\cup_{X \in \mathfrak{X}} X = \varnothing$ and $\cap_{X \in \mathfrak{X}} X = U$.

Exercise 2. Formulate and prove generalized De Morgan's laws that apply to general collections of sets.

Exercise 3. Given sets $A, B \subseteq X$, prove that

1. $A \cap B \subseteq A$ and $A \subseteq A \cup B$;

2.
$$(A \cap B = \emptyset \Leftrightarrow A \subseteq B^c)$$
, $(A \cap B = A \Leftrightarrow A \subseteq B)$ and $(A \cup B = A \Leftrightarrow B \subseteq A)$.

Exercise 4. Let $K \in \mathbb{N}$ be fixed, and define the function $\delta : \mathbb{R}^K \times \mathbb{R}^K \to \mathbb{R}$ by

$$\delta(x,y) = \sum_{k=1}^{K} |x_k - y_k|.$$

Argue that δ satisfies the following properties (which mean that it is a metric for \mathbb{R}^{κ}):

- 1. for all $x, y \in \mathbb{R}^{K}$, $\delta(x, y) \ge 0$;
- 2. for all $x, y \in \mathbb{R}^{K}$, $\delta(x, y) = \delta(y, x)$;
- 3. $\delta(x, y) = 0$ when, and only when, x = y; and
- 4. for all $x, y, z \in \mathbb{R}^{K}$, $\delta(x, y) \leq \delta(x, z) + \delta(z, y)$.

Exercise 5. Prove that if $x \in \mathbb{R}_{++}$ and $y \in \mathbb{R}$ is such that |y - x| < x, then $y \in \mathbb{R}_{++}$. Also prove that if $x \in \mathbb{R}_{--}$ and $y \in \mathbb{R}$ is such that |y - x| < -x, then $y \in \mathbb{R}_{--}$.

Exercise 6. Does the sequence $(1/\sqrt{n})_{n=1}^{\infty}$ have a limit? Is it Cauchy? How about the sequence $(3n/(n+\sqrt{n}))_{n=1}^{\infty}$?

Exercise 7. Does the sequence $(3n/\sqrt{n})_{n=1}^{\infty}$ converge?

Exercise 8. Consider a sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R} and a number $a \in \mathbb{R}$. Prove that if $a_n \leq \alpha$, for all $n \in \mathbb{N}$, and $\lim_{n \to \infty} a_n = a$, then $a \leq \alpha$. Similarly, if $a_n \geq \alpha$, for all $n \in \mathbb{N}$, and $\lim_{n \to \infty} a_n = a$, then $a \geq \alpha$.

Exercise 9. Recall the function $\delta = \mathbb{R}^K \times \mathbb{R}^K \to \mathbb{R}$ defined by

$$\delta(\mathbf{x},\mathbf{y}) = \sum_{k=1}^{K} |\mathbf{x}_k - \mathbf{y}_k|,$$

which was introduced in Exercise 4. Say that a sequence $(x_n)_{n=1}^{\infty}$, defined in \mathbb{R}^K , goes towards $x \in \mathbb{R}^K$ in a taxi if for every $\varepsilon > 0$, there exists $n^* \in \mathbb{N}$ such that, for all $n \ge n^*$, $\delta(x_n, x) < \varepsilon$. Denote this fact by $x_n \rightsquigarrow x$.

Argue that if sequence $(x_n)_{n=1}^{\infty}$ goes towards x in a taxi, then it also converges to $x \in \mathbb{R}^{K}$.

Exercise 10. Given a sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R} , define, for each $n \in \mathbb{N}$, the number $\sigma_n = \sum_{m=1}^n a_m$, and call the expression

$$\sum_{n=1}^{\infty} a_n$$

the infinite series defined by sequence $(a_n)_{n=1}^{\infty}$. If $\sigma_n \to \sigma \in \mathbb{R}$, we say that the series converges to σ , and write

$$\sum_{n=1}^{\infty} a_n = \sigma$$

1. Prove that if series $\sum_{n=1}^{\infty} a_n$ converges, then sequence a_n converges to 0.

- 2. The following steps are going to show that the converse statement is not true, as $a_n \rightarrow 0$ does not suffice to imply that the series converges:
 - (a) argue that sequence

$$(1, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \dots, \frac{1}{m}, \frac{1}{m}, \dots, \frac{1}{m}, \dots)$$

where, for each $m \in \mathbb{N}$, the term 1/m appears m times, converges to 0;

- (b) argue that, for this sequence, $(\sigma_n)_{n=1}^{\infty}$ is unbounded;
- (c) argue that the series defined by this sequence does not converge.

Exercise 11. Prove that if there exists a sequence $(x_n)_{n=1}^{\infty}$ defined in $X \setminus \{\bar{x}\}$ that converges to a point \bar{x} , then \bar{x} is a limit point of X.

Exercise 12. Consider a function $f: X \to \mathbb{R}$, where $X \subseteq \mathbb{R}^{K}$. Suppose that $\bar{x} \in \mathbb{R}^{K}$ is a limit point of X and that $\bar{y} \in \mathbb{R}$. Argue that $\lim_{x \to \bar{x}} f(x) = \bar{y}$ if for every sequence $(x_{n})_{n=1}^{\infty}$ such that $x_{n} \in X \setminus \{\bar{x}\}$, for all $n \in \mathbb{N}$, and that $\lim_{n \to \infty} x_{n} = \bar{x}$, one has that $\lim_{n \to \infty} f(x_{n}) = \bar{y}$.

Exercise 13. Suppose that $X = \mathbb{R}$ and $f: X \to \mathbb{R}$ is defined by

$${
m f}({
m x})=\left\{egin{array}{cc} 1/{
m x}, & {\it if}\ {
m x}
eq 0; \ 0, & {\it otherwise}. \end{array}
ight.$$

What is $\lim_{x\to 5} f(x)$? What is $\lim_{x\to 0} f(x)$?

Exercise 14. Let $f, g : X \to \mathbb{R}$. Let \bar{x} be a limit point of X. Suppose that for numbers $\bar{y}_1, \bar{y}_2 \in \mathbb{R}$ one has that $\lim_{x \to \bar{x}} f(x) = \bar{y}_1$ and $\lim_{x \to \bar{x}} g(x) = \bar{y}_2$. Argue that

$$\lim_{x\to \bar{x}}(f+g)(x)=\bar{y}_1+\bar{y}_2,$$

Exercise 15. Prove the following statement: if $(x_n)_{n=1}^{\infty}$ is a sequence defined on a compact set X, then it has a subsequence that converges to a point in X.

Exercise 16. We say that point x is an interior point of the set X, if there is some $\varepsilon > 0$ for which $B_{\varepsilon}(x) \subseteq X$. The set of all interior points of X is called the interior of X, and is usually denoted int(X). Note that $int(X) \subseteq X$.

- 1. Show that for every X, int(X) is open.
- 2. Show that X is open if, and only if, int(X) = X.
- 3. Prove that if $x \in int(X)$, then x is a limit point of X.

Exercise 17. Given a set $X \subseteq \mathbb{R}^{K}$, we define its closure, denoted by cl(X), as the set

$$\operatorname{cl}(X) = \{ x \in \mathbb{R}^{\mathsf{K}} \mid \forall \varepsilon > 0, B_{\varepsilon}(x) \cap X \neq \emptyset \}.$$

- 1. Prove that, given a set $X \subseteq \mathbb{R}^{K}$, $x \in cl(X)$ if, and only if, there exists a sequence $(x_n)_{n=1}^{\infty}$ in X such that $x_n \to x$.
- 2. Prove that for every set $X \subseteq \mathbb{R}^{K}$, $X \subseteq cl(X)$.
- 3. Prove that X is closed if, and only if, X = cl(X).

Exercise 18. Let $X \subseteq \mathbb{R}^{K}$ be fixed. A subset $A \subseteq X$ is called dense (in X) if $X \subseteq cl(A)$. Prove that if A is dense, then any point in X is either an element of A or a limit point of A.

Exercise 19. A point $x \in \mathbb{R}^{K}$ is said to be in the boundary of set $X \subseteq \mathbb{R}^{K}$, if for all $\varepsilon > 0$, $B_{\varepsilon}(x) \cap X \neq \emptyset$ and $B_{\varepsilon}(x) \cap X^{c} \neq \emptyset$. Let bd(X) be the set of all points in the boundary of X.¹ Argue that $bd(X) = cl(X) \setminus int(X)$.

Exercise 20. Argue that function $f : \mathbb{R}^{K} \to \mathbb{R}$ is continuous if for all open set $U \subseteq \mathbb{R}$, one has that $f^{-1}[U]$ is open.

Exercise 21. Let $X \subseteq \mathbb{R}^{K}$ be non-empty and $f: X \to \mathbb{R}$. Argue that if for every open set $U \subseteq \mathbb{R}$, there exists an open set $O \subseteq \mathbb{R}^{K}$ such that $f^{-1}[U] = O \cap X$, then f is continuous.

Exercise 22. Suppose that $X \subseteq \mathbb{R}$ is open, and fix a point $x \in X$ and $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq X$. Given a function $f: X \to \mathbb{R}$, define $\delta: B'_{\varepsilon}(0) \to \mathbb{R}$ by

$$\delta(h) = \frac{f(x+h) - f(x)}{h}.$$

Function $f : X \to \mathbb{R}$ is differentiable at x if for some $\ell \in \mathbb{R}$ it is true that $\lim_{h\to 0} \delta(h) = \ell$.

Argue that if $f: X \to \mathbb{R}$, is differentiable at x, then it is continuous at x^2 .

$$f(\mathbf{x}) = f(\bar{\mathbf{x}}) + \frac{f(\mathbf{x}) - f(\bar{\mathbf{x}})}{\mathbf{x} - \bar{\mathbf{x}}} \cdot (\mathbf{x} - \bar{\mathbf{x}}).$$

¹ Alternative notation is X^{∂} .

² Hint: when $x \neq \bar{x}$,

Exercise 23. Consider the problem of a consumer who must choose a bundle of $L \in \mathbb{N}$ perfectly divisible commodities. Assume that this individual can only consume positive amounts of these goods, so that her consumption space is $X = \mathbb{R}_{++}^L$. The individual's preferences are a complete, reflexive and transitive binary relation \succeq on X, with \succ and \sim defined as usual: $x \succ x'$ if it is not true that $x' \succeq x$; and $x \sim x'$ if it is true that $x \succeq x'$ and that $x' \succeq x$.

In this setting, \succeq is said to be strictly monotone if x > x' implies $x \succ x'$, and strongly convex if for any x, any $x' \neq x$ such that $x \succeq x'$, and any $0 < \alpha < 1$, it is true that $\alpha x + (1 - \alpha)x' \succ x'$. It is continuous if the weak preference relation is preserved at the limit: for every pair of convergent sequences $(x_n)_{n=1}^{\infty}$ and $(x'_n)_{n=1}^{\infty}$ defined in X and satisfying that $x_n \succeq x'_n$ at all $n \in \mathbb{N}$, one has that

$$\lim_{n\to\infty} x_n \succsim \lim_{n\to\infty} x'_n.$$

Finally, relation \succeq is represented by function $u: X \to \mathbb{R}$ if $u(x) \ge u(x')$ occurs when, and only when, $x \succeq x'$. The following steps prove that if \succeq is strictly monotone, strongly convex and continuous, then it can be represented by a continuous utility function.

1. Fix $x \in X$, and define the sets

 $B = \{t \in \mathbb{R}_+ \mid te \succeq x\}$ and $W = \{t \in \mathbb{R}_+ \mid x \succeq te\},\$

where e = (1, ..., 1). Argue there exist numbers \overline{t} and \underline{t} such that $B = [\underline{t}, \infty)$ and $W = [0, \overline{t}]$.

- 2. Argue that $B \cap W \neq \emptyset$.
- 3. Argue that $B \cap W$ is a singleton set.
- 4. Define u(x) as the number for which $u(x)e \sim x$. Argue that this assignment constitutes a function.
- 5. Argue that that u represents \succeq .
- 6. Argue that for every pair of numbers $a, b \in \mathbb{R}_{++}$,

$$\mathfrak{u}^{-1}[(\mathfrak{a},\mathfrak{b})] = \{ \mathbf{x} \in \mathbb{R}_+^{\mathsf{L}} \mid \mathbf{x} \succeq \mathfrak{b} \mathfrak{e} \}^{\mathsf{c}} \cap \{ \mathbf{x} \in \mathbb{R}_+^{\mathsf{L}} \mid \mathfrak{a} \mathfrak{e} \succeq \mathbf{x} \}^{\mathsf{c}}.$$

- 7. Argue that for all numbers $a, b \in \mathbb{R}_+$, set $u^{-1}[(a, b)]$ is open.
- 8. Conclude that u is continuous.

Exercise 24. Let $X \subseteq \mathbb{R}^{K}$, where $K \in \mathbb{N}$, be non-empty, and suppose that functions $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ are continuous and satisfy that $f(x) \leq g(x)$ for all $x \in X$. Argue that the correspondence $\Gamma: X \to \mathbb{R}$, defined by

$$\Gamma(\mathbf{x}) = [\mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x})]$$

is non-empty- and compact-valued, and lower hemicontinuous.

Exercise 25. Let $X \subseteq \mathbb{R}^{K}$, where $K \in \mathbb{N}$, be non-empty, and suppose that functions $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ are bounded and continuous, and satisfy that $f(x) \leq g(x)$ for all $x \in X$. Argue that the correspondence $\Gamma: X \twoheadrightarrow \mathbb{R}$, defined by

$$\Gamma(\mathbf{x}) = [\mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x})]$$

is (non-empty- and compact-valued, and) upper hemicontinuous.

Exercise 26. Consider a society populated by a finite number of individuals who trade a finite number of commodities, l = 1, ..., L. Denote the (L-1)-dimensional simplex by

$$\Delta,=\left\{ \mathfrak{p}\in\mathbb{R}_{+}^{\mathsf{L}}\mid\sum_{\ell}\mathfrak{p}_{\ell}=1
ight\} ,$$

and let the aggregate excess demand function be $Z: \Delta \to \mathbb{R}^{L,3}$

A vector of competitive equilibrium prices is a root of the aggregate excess demand function, namely $p \in \Delta$ for which Z(p) = 0. The economy is said to be determinate if every vector of (competitive) equilibrium prices is locally unique,

$$Z(p) = \sum_{i} [x^{i}(p) - w^{i}]_{j}$$

where

$$x^{i}(p) = \operatorname{argmax}_{x} \left\{ u^{i}(x) : p \cdot x \leqslant p \cdot w^{i} \right\}$$

Assume that this function is well defined.

³ Formally, let consumer i's utility function and endowment be, respectively, $u^i : \mathbb{R}^L_+ \to \mathbb{R}$ and $w^i \in \mathbb{R}^L_+$. The aggregate excess demand function is $Z : \Delta \to \mathbb{R}^L$, is defined by

in the sense that for all $p \in \Delta$ for which Z(p) = 0, there exists a number $\varepsilon > 0$ such that for all $p' \in B'_{\varepsilon}(p) \cap \Delta$, $Z(p') \neq 0$. Assuming that the demand function is continuous, the following steps show that determinate economies have finitely many equilibria.

- 1. Argue that any sequence of equilibrium prices has a convergent subsequence, and that the limit of that subsequence is a vector of equilibrium prices too.
- Argue that if one can construct a sequence of distinct vectors of equilibrium prices, then there exists some p ∈ Δ such that: (i) Z(p) = 0, and (ii) for every ε > 0 there exists p' ∈ B'_ε(p) ∩ Δ for which Z(p') = 0.
- 3. Argue that, as a consequence, if the economy is determinate, there exist only finitely many vectors $p \in \Delta$ such that Z(p) = 0.

Exercise 27. Consider a two-person simultaneous-move game, where each player i = 1, 2 chooses an action s^i from a predetermined set Σ^i . A pair of strategies (s^1, s^2) is a Nash equilibrium in pure strategies if, for each i, s^i solves the problem

$$\max_{\hat{s}\in\Sigma^{i}}u^{i}(\hat{s},s^{\neg i}),$$

where $\neg i$ is used to denote the agent other than i. The steps below prove the following theorem:

Theorem (Glicksberg). Suppose that for both i, set $\Sigma^i \subset \mathbb{R}$ is compact and convex, and function u^i is concave in s^i and continuous. Then, the game has a Nash equilibrium in pure strategies.

1. For each i, define the correspondence $\sigma^i:\Sigma^{\neg i}\twoheadrightarrow\Sigma^i,$ by

$$\sigma^{i}(s^{\neg i}) = \operatorname{argmax}_{\hat{s} \in \Sigma^{i}} u^{i}(\hat{s}, s^{\neg i}).$$
(*)

Argue that each σ^i is nonempty-, compact- and convex valued.

2. Argue that, moreover, each σ^i is upper hemicontinuous.

- 3. Define $\sigma: \Sigma^1 \times \Sigma^2 \twoheadrightarrow \Sigma^1 \times \Sigma^2$ by $\sigma(s^1, s^2) = \sigma^1(s^2) \times \sigma^2(s^1)$. Argue that this correspondence has a fixed point.
- 4. Conclude that this proves Glicksberg's theorem.

Exercise 28. Let the matrix $R = (r^1, r^2, ..., r^A)$, of dimensions $S \times A$, be a financial market. Denote the set of prices that allow no arbitrage opportunities by

$$\mathbf{Q}_1 = \{ \mathbf{q} \in \mathbb{R}^A \mid \mathbf{R}\vartheta > \mathbf{0} \implies \mathbf{q}\vartheta > \mathbf{0} \};$$

and denote the set of rationalizable asset prices by

$$\mathbf{Q}_2 = \{ \mathbf{q} \in \mathbb{R}^A \mid \exists \pi \in \mathbb{R}^S_{++} : \pi \mathbf{R} = \mathbf{q} \}.$$

- 1. Show that Q_1 is non-empty and convex, and is a (positive) cone.⁴
- 2. Argue that Q_2 is non-empty and convex, and is a (positive) cone.
- 3. Argue that $Q_2 \subseteq Q_1$

Exercise 29. The space of sequences of real numbers can be written as \mathbb{R}^{∞} , where each element, for the sake of clarity, will be written as

$$\vec{\mathbf{x}} = (\mathbf{x}_1, \mathbf{x}_2, \ldots) = (\mathbf{x}_m)_{m=1}^{\infty}.$$

Let $\mathcal{B} \subseteq \mathbb{R}^{\infty}$ denote the subset that contains all bounded sequences in \mathbb{R} . A sequence $(\vec{x}_n)_{n=1}^{\infty}$ defined in \mathcal{B} is a sequence of sequences, where

$$\vec{x}_n = (x_{n,1}, x_{n,2}, \ldots) = (x_{n,m})_{m=1}^{\infty}$$

is a bounded sequence defined in \mathbb{R} .

Sequence $(\vec{x}_n)_{n=1}^{\infty}$ is said to converge to \vec{x} pointwise if for each $m \in \mathbb{N}$,

$$\lim_{n\to\infty} x_{n,m} = x_m.$$

 4 That is, for all $q \in Q_1$, for all $\alpha \in \mathbb{R}_{++}$, $lpha q \in Q_1$

It is said to converge to \vec{x} uniformly if for every $\varepsilon > 0$ there exists an $n^* \in \mathbb{N}$ such that, for all $n \ge n^*$,

$$\sup_{m\in\mathbb{N}}|x_{n,m}-x_m|<\varepsilon.$$

The following exercises will show that uniform convergence implies, but is not implied by, pointwise convergence.

- 1. Argue that if $(\vec{x}_n)_{n=1}^{\infty}$ converges to \vec{x} uniformly, then it converges to \vec{x} pointwise.
- 2. Consider the sequence $(\vec{x}_n)_{n=1}^\infty$ constructed as follows:

$$\mathbf{x}_{n,m} = \begin{cases} 1, & if \ m = n; \\ 0 & otherwise. \end{cases}$$

Argue that this sequence converges to $\vec{x}=(0)_{m=1}^\infty$ pointwise, but not uniformly.

Exercise 30. Let $X \subseteq \mathbb{R}^{K}$, and denote by \mathbb{B} the set of all continuous, bounded functions $f: X \to \mathbb{R}$. Equip this set with the sup metric d. Argue that if $T: \mathbb{B} \to \mathbb{B}$ is a contraction, then for any $f \in \mathbb{B}$, the sequence constructed by letting

$$f_1 = f$$
 and $f_n = T(f_{n-1})$ for all $n \ge 2$

is Cauchy.

Exercise 31. Let $B \subseteq \mathbb{R}^{K}$ be closed, and suppose that $f: B \to B$ is such that, for some number $\alpha < 1$, we have that for all $x, x' \in B$,

$$\|f(x) - f(x')\| \leq \alpha \|x - x'\|.$$

- 1. Argue that there exists $\bar{x} \in B$ such that $f(\bar{x}) = \bar{x}$.
- 2. Argue that the \bar{x} found before is unique.
- 3. Argue that for any $x \in B$, the sequence constructed by letting

$$x_1 = x$$
 and $x_n = f(x_{n-1})$ for all $n \ge 2$

converges to \bar{x} .