
Curso de Análisis Real para Economía

Escuela de Verano de Bogotá 2022

Exercise 1. Let U be a universe. For any collection X of subsets of U, define⋃
X∈X

X = {x ∈ U | ∃X ∈ X : x ∈ X} and
⋂
X∈X

X = {x ∈ U | ∀X ∈ X, x ∈ X} .

Argue that if X = ∅, then ∪X∈XX = ∅ and ∩X∈XX = U.

Exercise 2. Formulate and prove generalized De Morgan’s laws that apply to

general collections of sets.

Exercise 3. Given sets A,B ⊆ X, prove that

1. A ∩ B ⊆ A and A ⊆ A ∪ B;

2. (A ∩ B = ∅⇔ A ⊆ Bc), (A ∩ B = A⇔ A ⊆ B) and (A ∪ B = A⇔ B ⊆ A).

Exercise 4. Let K ∈ N be fixed, and define the function δ : RK × RK → R by

δ(x,y) =
K∑
k=1

|xk − yk|.

Argue that δ satisfies the following properties (which mean that it is a metric

for RK):

1. for all x,y ∈ RK, δ(x,y) > 0;

2. for all x,y ∈ RK, δ(x,y) = δ(y, x);

3. δ(x,y) = 0 when, and only when, x = y; and

4. for all x,y, z ∈ RK, δ(x,y) 6 δ(x, z) + δ(z,y).

Exercise 5. Prove that if x ∈ R++ and y ∈ R is such that |y − x| < x, then

y ∈ R++. Also prove that if x ∈ R−− and y ∈ R is such that |y − x| < −x, then

y ∈ R−−.

Exercise 6. Does the sequence (1/
√
n)∞n=1 have a limit? Is it Cauchy? How

about the sequence (3n/(n+
√
n))∞n=1?
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Exercise 7. Does the sequence (3n/
√
n)∞n=1 converge?

Exercise 8. Consider a sequence (an)
∞
n=1 in R and a number a ∈ R. Prove that

if an 6 α, for all n ∈ N, and limn→∞ an = a, then a 6 α. Similarly, if an > α,

for all n ∈ N, and limn→∞ an = a, then a > α.

Exercise 9. Recall the function δ = RK × RK → R defined by

δ(x,y) =
K∑
k=1

|xk − yk|,

which was introduced in Exercise 4. Say that a sequence (xn)
∞
n=1, defined in RK,

goes towards x ∈ RK in a taxi if for every ε > 0, there exists n∗ ∈ N such that, for

all n > n∗, δ(xn, x) < ε. Denote this fact by xn  x.

Argue that if sequence (xn)
∞
n=1 goes towards x in a taxi, then it also converges

to x ∈ RK.

Exercise 10. Given a sequence (an)
∞
n=1 in R, define, for each n ∈ N, the number

σn =
∑n
m=1 am, and call the expression

∞∑
n=1

an

the infinite series defined by sequence (an)
∞
n=1. If σn → σ ∈ R, we say that the

series converges to σ, and write

∞∑
n=1

an = σ

1. Prove that if series
∑∞
n=1 an converges, then sequence an converges to 0.

2. The following steps are going to show that the converse statement is not

true, as an → 0 does not suffice to imply that the series converges:

(a) argue that sequence(
1, 1

2 ,
1
2 ,

1
3 ,

1
3 ,

1
3 , . . . ,

1
m
, 1
m
, . . . , 1

m
, . . .

)
where, for each m ∈ N, the term 1/m appears m times, converges to 0;
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(b) argue that, for this sequence, (σn)∞n=1 is unbounded;

(c) argue that the series defined by this sequence does not converge.

Exercise 11. Prove that if there exists a sequence (xn)
∞
n=1 defined in X \ {x̄} that

converges to a point x̄, then x̄ is a limit point of X.

Exercise 12. Consider a function f : X→ R, where X ⊆ RK. Suppose that x̄ ∈ RK

is a limit point of X and that ȳ ∈ R. Argue that limx→x̄ f(x) = ȳ if for every

sequence (xn)
∞
n=1 such that xn ∈ X \ {x̄}, for all n ∈ N, and that limn→∞ xn = x̄,

one has that limn→∞ f(xn) = ȳ.
Exercise 13. Suppose that X = R and f : X→ R is defined by

f(x) =

 1/x, if x 6= 0;

0, otherwise.

What is limx→5 f(x)? What is limx→0 f(x)?

Exercise 14. Let f,g : X → R. Let x̄ be a limit point of X. Suppose that for

numbers ȳ1, ȳ2 ∈ R one has that limx→x̄ f(x) = ȳ1 and limx→x̄ g(x) = ȳ2. Argue

that

lim
x→x̄

(f+ g)(x) = ȳ1 + ȳ2.

Exercise 15. Prove the following statement: if (xn)∞n=1 is a sequence defined on

a compact set X, then it has a subsequence that converges to a point in X.

Exercise 16. We say that point x is an interior point of the set X, if there is some

ε > 0 for which Bε(x) ⊆ X. The set of all interior points of X is called the interior

of X, and is usually denoted int(X). Note that int(X) ⊆ X.

1. Show that for every X, int(X) is open.

2. Show that X is open if, and only if, int(X) = X.

3. Prove that if x ∈ int(X), then x is a limit point of X.
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Exercise 17. Given a set X ⊆ RK, we define its closure, denoted by cl(X), as the

set

cl(X) = {x ∈ RK | ∀ε > 0,Bε(x) ∩ X 6= ∅}.

1. Prove that, given a set X ⊆ RK, x ∈ cl(X) if, and only if, there exists a

sequence (xn)
∞
n=1 in X such that xn → x.

2. Prove that for every set X ⊆ RK, X ⊆ cl(X).

3. Prove that X is closed if, and only if, X = cl(X).

Exercise 18. Let X ⊆ RK be fixed. A subset A ⊆ X is called dense (in X) if

X ⊆ cl(A). Prove that if A is dense, then any point in X is either an element of

A or a limit point of A.

Exercise 19. A point x ∈ RK is said to be in the boundary of set X ⊆ RK, if for

all ε > 0, Bε(x)∩X 6= ∅ and Bε(x)∩Xc 6= ∅. Let bd(X) be the set of all points in

the boundary of X.1 Argue that bd(X) = cl(X) \ int(X).

Exercise 20. Argue that function f : RK → R is continuous if for all open set

U ⊆ R, one has that f−1[U] is open.

Exercise 21. Let X ⊆ RK be non-empty and f : X → R. Argue that if for every

open set U ⊆ R, there exists an open set O ⊆ RK such that f−1[U] = O ∩ X, then
f is continuous.

Exercise 22. Suppose that X ⊆ R is open, and fix a point x ∈ X and ε > 0 such

that Bε(x) ⊆ X. Given a function f : X→ R, define δ : B ′ε(0)→ R by

δ(h) =
f(x+ h) − f(x)

h
.

Function f : X → R is differentiable at x if for some ` ∈ R it is true that

limh→0 δ(h) = `.

Argue that if f : X→ R, is differentiable at x, then it is continuous at x.2

1 Alternative notation is X∂.
2 Hint: when x 6= x̄,

f(x) = f(x̄) +
f(x) − f(x̄)

x− x̄
· (x− x̄).
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Exercise 23. Consider the problem of a consumer who must choose a bundle

of L ∈ N perfectly divisible commodities. Assume that this individual can only

consume positive amounts of these goods, so that her consumption space is X =

RL++. The individual’s preferences are a complete, reflexive and transitive binary

relation % on X, with � and ∼ defined as usual: x � x ′ if it is not true that x ′ % x;
and x ∼ x ′ if it is true that x % x ′ and that x ′ % x.

In this setting, % is said to be strictly monotone if x > x ′ implies x � x ′, and
strongly convex if for any x, any x ′ 6= x such that x % x ′, and any 0 < α < 1, it

is true that αx + (1 − α)x ′ � x ′. It is continuous if the weak preference relation

is preserved at the limit: for every pair of convergent sequences (xn)
∞
n=1 and

(x ′n)
∞
n=1 defined in X and satisfying that xn % x ′n at all n ∈ N, one has that

lim
n→∞ xn % lim

n→∞ x ′n.
Finally, relation % is represented by function u : X→ R if u(x) > u(x ′) occurs

when, and only when, x % x ′. The following steps prove that if % is strictly

monotone, strongly convex and continuous, then it can be represented by a con-

tinuous utility function.

1. Fix x ∈ X, and define the sets

B = {t ∈ R+ | te % x} and W = {t ∈ R+ | x % te},

where e = (1, . . . , 1). Argue there exist numbers t̄ and t such that B = [t,∞)

and W = [0, t].

2. Argue that B ∩W 6= ∅.

3. Argue that B ∩W is a singleton set.

4. Define u(x) as the number for which u(x)e ∼ x. Argue that this assignment

constitutes a function.

5. Argue that that u represents %.

6. Argue that for every pair of numbers a,b ∈ R++,

u−1[(a,b)] = {x ∈ RL+ | x % be}c ∩ {x ∈ RL+ | ae % x}c.
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7. Argue that for all numbers a,b ∈ R+, set u−1[(a,b)] is open.

8. Conclude that u is continuous.

Exercise 24. Let X ⊆ RK, where K ∈ N, be non-empty, and suppose that functions

f : X→ R and g : X→ R are continuous and satisfy that f(x) 6 g(x) for all x ∈ X.
Argue that the correspondence Γ : X� R, defined by

Γ(x) = [f(x),g(x)]

is non-empty- and compact-valued, and lower hemicontinuous.

Exercise 25. Let X ⊆ RK, where K ∈ N, be non-empty, and suppose that functions

f : X→ R and g : X→ R are bounded and continuous, and satisfy that f(x) 6 g(x)

for all x ∈ X. Argue that the correspondence Γ : X� R, defined by

Γ(x) = [f(x),g(x)]

is (non-empty- and compact-valued, and) upper hemicontinuous.

Exercise 26. Consider a society populated by a finite number of individuals who

trade a finite number of commodities, ` = 1, . . . ,L. Denote the (L−1)-dimensional

simplex by

∆,=
{
p ∈ RL+ |

∑
` p` = 1

}
,

and let the aggregate excess demand function be Z : ∆→ RL.3

A vector of competitive equilibrium prices is a root of the aggregate excess

demand function, namely p ∈ ∆ for which Z(p) = 0. The economy is said to be

determinate if every vector of (competitive) equilibrium prices is locally unique,

3 Formally, let consumer i’s utility function and endowment be, respectively, ui : RL+ → R and

wi ∈ RL+. The aggregate excess demand function is Z : ∆→ RL, is defined by

Z(p) =
∑
i[x
i(p) −wi],

where

xi(p) = argmaxx
{
ui(x) : p · x 6 p ·wi

}
.

Assume that this function is well defined.
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in the sense that for all p ∈ ∆ for which Z(p) = 0, there exists a number ε > 0

such that for all p ′ ∈ B ′ε(p) ∩ ∆, Z(p ′) 6= 0. Assuming that the demand function

is continuous, the following steps show that determinate economies have finitely

many equilibria.

1. Argue that any sequence of equilibrium prices has a convergent subsequence,

and that the limit of that subsequence is a vector of equilibrium prices too.

2. Argue that if one can construct a sequence of distinct vectors of equilibrium

prices, then there exists some p ∈ ∆ such that: (i) Z(p) = 0, and (ii) for

every ε > 0 there exists p ′ ∈ B ′ε(p) ∩ ∆ for which Z(p ′) = 0.

3. Argue that, as a consequence, if the economy is determinate, there exist

only finitely many vectors p ∈ ∆ such that Z(p) = 0.

Exercise 27. Consider a two-person simultaneous-move game, where each player

i = 1, 2 chooses an action si from a predetermined set Σi. A pair of strategies

(s1, s2) is a Nash equilibrium in pure strategies if, for each i, si solves the problem

max
ŝ∈Σi

ui(ŝ, s¬i),

where ¬i is used to denote the agent other than i. The steps below prove the

following theorem:

Theorem (Glicksberg). Suppose that for both i, set Σi ⊂ R is compact

and convex, and function ui is concave in si and continuous. Then,

the game has a Nash equilibrium in pure strategies.

1. For each i, define the correspondence σi : Σ¬i � Σi, by

σi(s¬i) = argmaxŝ∈Σi u
i(ŝ, s¬i). (∗)

Argue that each σi is nonempty-, compact- and convex valued.

2. Argue that, moreover, each σi is upper hemicontinuous.
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3. Define σ : Σ1 × Σ2 � Σ1 × Σ2 by σ(s1, s2) = σ1(s2) × σ2(s1). Argue that this

correspondence has a fixed point.

4. Conclude that this proves Glicksberg’s theorem.

Exercise 28. Let the matrix R = (r1, r2, . . . , rA), of dimensions S × A, be a fi-

nancial market. Denote the set of prices that allow no arbitrage opportunities

by

Q1 = {q ∈ RA | Rϑ > 0 =⇒ qϑ > 0};

and denote the set of rationalizable asset prices by

Q2 = {q ∈ RA | ∃π ∈ RS++ : πR = q}.

1. Show that Q1 is non-empty and convex, and is a (positive) cone.4

2. Argue that Q2 is non-empty and convex, and is a (positive) cone.

3. Argue that Q2 ⊆ Q1

Exercise 29. The space of sequences of real numbers can be written as R∞, where
each element, for the sake of clarity, will be written as

~x = (x1, x2, . . .) = (xm)
∞
m=1.

Let B ⊆ R∞ denote the subset that contains all bounded sequences in R. A

sequence (~xn)
∞
n=1 defined in B is a sequence of sequences, where

~xn = (xn,1, xn,2, . . .) = (xn,m)
∞
m=1

is a bounded sequence defined in R.

Sequence (~xn)
∞
n=1 is said to converge to ~x pointwise if for each m ∈ N,

lim
n→∞ xn,m = xm.

4 That is, for all q ∈ Q1, for all α ∈ R++, αq ∈ Q1
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It is said to converge to ~x uniformly if for every ε > 0 there exists an n∗ ∈ N such

that, for all n > n∗,

sup
m∈N

|xn,m − xm| < ε.

The following exercises will show that uniform convergence implies, but is not

implied by, pointwise convergence.

1. Argue that if (~xn)∞n=1 converges to ~x uniformly, then it converges to ~x point-

wise.

2. Consider the sequence (~xn)
∞
n=1 constructed as follows:

xn,m =

 1, if m = n;

0 otherwise.

Argue that this sequence converges to ~x = (0)∞m=1 pointwise, but not uni-

formly.

Exercise 30. Let X ⊆ RK, and denote by B the set of all continuous, bounded

functions f : X→ R. Equip this set with the sup metric d. Argue that if T : B→ B

is a contraction, then for any f ∈ B, the sequence constructed by letting

f1 = f and fn = T(fn−1) for all n > 2

is Cauchy.

Exercise 31. Let B ⊆ RK be closed, and suppose that f : B→ B is such that, for

some number α < 1, we have that for all x, x ′ ∈ B,

‖f(x) − f(x ′)‖ 6 α‖x− x ′‖.

1. Argue that there exists x̄ ∈ B such that f(x̄) = x̄.

2. Argue that the x̄ found before is unique.

3. Argue that for any x ∈ B, the sequence constructed by letting

x1 = x and xn = f(xn−1) for all n > 2

converges to x̄.
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