Curso de Análisis Real para Economía

Escuela de Verano de Bogotá 2022
Exercise 1. Let U be a universe. For any collection X of subsets of U, define

$$
\bigcup_{\mathrm{X} \in \mathcal{X}} \mathrm{X}=\{\mathrm{x} \in \mathrm{U} \mid \exists \mathrm{X} \in \mathcal{X}: x \in \mathrm{X}\} \text { and } \bigcap_{\mathrm{X} \in X} \mathrm{X}=\{\mathrm{x} \in \mathrm{U} \mid \forall \mathrm{X} \in X, x \in \mathrm{X}\}
$$

Argue that if $X=\varnothing$, then $\cup_{\mathrm{X} \in \mathrm{X}} \mathrm{X}=\varnothing$ and $\cap_{\mathrm{x} \in \mathrm{X}} \mathrm{X}=\mathrm{U}$.
Exercise 2. Formulate and prove generalized De Morgan's laws that apply to general collections of sets.

Exercise 3. Given sets $A, B \subseteq X$, prove that

1. $A \cap B \subseteq A$ and $A \subseteq A \cup B ;$
2. $\left(A \cap B=\varnothing \Leftrightarrow A \subseteq B^{c}\right),(A \cap B=A \Leftrightarrow A \subseteq B)$ and $(A \cup B=A \Leftrightarrow B \subseteq A)$.

Exercise 4. Let $\mathrm{K} \in \mathbb{N}$ be fixed, and define the function $\delta: \mathbb{R}^{\mathrm{K}} \times \mathbb{R}^{\mathrm{K}} \rightarrow \mathbb{R}$ by

$$
\delta(x, y)=\sum_{k=1}^{K}\left|x_{k}-y_{k}\right|
$$

Argue that δ satisfies the following properties (which mean that it is a metric for \mathbb{R}^{K}):

1. for all $x, y \in \mathbb{R}^{k}, \delta(x, y) \geqslant 0$;
2. for all $x, y \in \mathbb{R}^{K}, \delta(x, y)=\delta(y, x)$;
3. $\delta(x, y)=0$ when, and only when, $x=y$; and
4. for all $x, y, z \in \mathbb{R}^{K}, \delta(x, y) \leqslant \delta(x, z)+\delta(z, y)$.

Exercise 5. Prove that if $x \in \mathbb{R}_{++}$and $y \in \mathbb{R}$ is such that $|y-x|<x$, then $y \in \mathbb{R}_{++}$. Also prove that if $x \in \mathbb{R}_{--}$and $y \in \mathbb{R}$ is such that $|y-x|<-x$, then $y \in \mathbb{R}_{--}$.

Exercise 6. Does the sequence $(1 / \sqrt{n})_{n=1}^{\infty}$ have a limit? Is it Cauchy? How about the sequence $(3 n /(n+\sqrt{n}))_{n=1}^{\infty}$?

Exercise 7. Does the sequence $(3 n / \sqrt{n})_{n=1}^{\infty}$ converge?
Exercise 8. Consider a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ in \mathbb{R} and a number $a \in \mathbb{R}$. Prove that if $a_{n} \leqslant \alpha$, for all $n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty} a_{n}=a$, then $a \leqslant \alpha$. Similarly, if $a_{n} \geqslant \alpha$, for all $n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty} a_{n}=a$, then $a \geqslant \alpha$.

Exercise 9. Recall the function $\delta=\mathbb{R}^{K} \times \mathbb{R}^{K} \rightarrow \mathbb{R}$ defined by

$$
\delta(x, y)=\sum_{k=1}^{k}\left|x_{k}-y_{k}\right|
$$

which was introduced in Exercise 4. Say that a sequence $\left(x_{n}\right)_{n=1}^{\infty}$, defined in \mathbb{R}^{K}, goes towards $x \in \mathbb{R}^{K}$ in a taxi if for every $\varepsilon>0$, there exists $n^{*} \in \mathbb{N}$ such that, for all $n \geqslant n^{*}, \delta\left(x_{n}, x\right)<\varepsilon$. Denote this fact by $x_{n} \rightsquigarrow x$.

Argue that if sequence $\left(\mathrm{x}_{\mathrm{n}}\right)_{\mathrm{n}=1}^{\infty}$ goes towards x in a taxi, then it also converges to $x \in \mathbb{R}^{K}$.

Exercise 10. Given a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ in \mathbb{R}, define, for each $n \in \mathbb{N}$, the number $\sigma_{n}=\sum_{m=1}^{n} a_{m}$, and call the expression

$$
\sum_{n=1}^{\infty} a_{n}
$$

the infinite series defined by sequence $\left(a_{n}\right)_{n=1}^{\infty}$. If $\sigma_{n} \rightarrow \sigma \in \mathbb{R}$, we say that the series converges to σ, and write

$$
\sum_{n=1}^{\infty} a_{n}=\sigma
$$

1. Prove that if series $\sum_{n=1}^{\infty} a_{n}$ converges, then sequence a_{n} converges to 0 .
2. The following steps are going to show that the converse statement is not true, as $a_{n} \rightarrow 0$ does not suffice to imply that the series converges:
(a) argue that sequence

$$
\left(1, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots, \frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}, \ldots\right)
$$

where, for each $\mathfrak{m} \in \mathbb{N}$, the term $1 / \mathrm{m}$ appears m times, converges to 0 ;
(b) argue that, for this sequence, $\left(\sigma_{n}\right)_{n=1}^{\infty}$ is unbounded;
(c) argue that the series defined by this sequence does not converge.

Exercise 11. Prove that if there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ defined in $X \backslash\{\bar{x}\}$ that converges to a point \bar{x}, then \bar{x} is a limit point of X.

Exercise 12. Consider a function $f: X \rightarrow \mathbb{R}$, where $X \subseteq \mathbb{R}^{K}$. Suppose that $\bar{x} \in \mathbb{R}^{K}$ is a limit point of X and that $\bar{y} \in \mathbb{R}$. Argue that $\lim _{x \rightarrow \bar{x}} f(x)=\bar{y}$ if for every sequence $\left(x_{n}\right)_{n=1}^{\infty}$ such that $x_{n} \in X \backslash\{\bar{x}\}$, for all $n \in \mathbb{N}$, and that $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$, one has that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\bar{y}$.

Exercise 13. Suppose that $X=\mathbb{R}$ and $f: X \rightarrow \mathbb{R}$ is defined by

$$
f(x)= \begin{cases}1 / x, & \text { if } x \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

What is $\lim _{x \rightarrow 5} f(x)$? What is $\lim _{x \rightarrow 0} f(x)$?
Exercise 14. Let $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathbb{R}$. Let $\bar{\chi}$ be a limit point of X . Suppose that for numbers $\bar{y}_{1}, \bar{y}_{2} \in \mathbb{R}$ one has that $\lim _{x \rightarrow \bar{x}} f(x)=\bar{y}_{1}$ and $\lim _{x \rightarrow \bar{x}} g(x)=\bar{y}_{2}$. Argue that

$$
\lim _{x \rightarrow \bar{x}}(f+g)(x)=\bar{y}_{1}+\bar{y}_{2} .
$$

Exercise 15. Prove the following statement: if $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence defined on a compact set X, then it has a subsequence that converges to a point in X.

Exercise 16. We say that point x is an interior point of the set X, if there is some $\varepsilon>0$ for which $\mathrm{B}_{\varepsilon}(\mathrm{X}) \subseteq \mathrm{X}$. The set of all interior points of X is called the interior of X, and is usually denoted $\operatorname{int}(X)$. Note that $\operatorname{int}(X) \subseteq X$.

1. Show that for every $X, \operatorname{int}(X)$ is open.
2. Show that X is open if, and only if, $\operatorname{int}(X)=X$.
3. Prove that if $x \in \operatorname{int}(X)$, then x is a limit point of X.

Exercise 17. Given a set $X \subseteq \mathbb{R}^{K}$, we define its closure, denoted by $\operatorname{cl}(X)$, as the set

$$
\operatorname{cl}(X)=\left\{x \in \mathbb{R}^{K} \mid \forall \varepsilon>0, B_{\varepsilon}(x) \cap X \neq \varnothing\right\} .
$$

1. Prove that, given a set $X \subseteq \mathbb{R}^{K}, x \in \operatorname{cl}(X)$ if, and only if, there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in X such that $x_{n} \rightarrow x$.
2. Prove that for every set $X \subseteq \mathbb{R}^{K}, X \subseteq \operatorname{cl}(X)$.
3. Prove that X is closed if, and only if, $X=\operatorname{cl}(X)$.

Exercise 18. Let $X \subseteq \mathbb{R}^{K}$ be fixed. A subset $A \subseteq X$ is called dense (in X) if $X \subseteq \operatorname{cl}(A)$. Prove that if A is dense, then any point in X is either an element of A or a limit point of A.

Exercise 19. A point $x \in \mathbb{R}^{k}$ is said to be in the boundary of set $X \subseteq \mathbb{R}^{K}$, if for all $\varepsilon>0, \mathrm{~B}_{\varepsilon}(\mathrm{X}) \cap \mathrm{X} \neq \varnothing$ and $\mathrm{B}_{\varepsilon}(\mathrm{x}) \cap \mathrm{X}^{\mathrm{c}} \neq \varnothing$. Let $\mathrm{bd}(\mathrm{X})$ be the set of all points in the boundary of $X .{ }^{1}$ Argue that $\operatorname{bd}(X)=\operatorname{cl}(X) \backslash \operatorname{int}(X)$.

Exercise 20. Argue that function $f: \mathbb{R}^{K} \rightarrow \mathbb{R}$ is continuous if for all open set $\mathrm{U} \subseteq \mathbb{R}$, one has that $\mathrm{f}^{-1}[\mathrm{U}]$ is open.

Exercise 21. Let $X \subseteq \mathbb{R}^{K}$ be non-empty and $f: X \rightarrow \mathbb{R}$. Argue that if for every open set $\mathrm{U} \subseteq \mathbb{R}$, there exists an open set $\mathrm{O} \subseteq \mathbb{R}^{K}$ such that $\mathrm{f}^{-1}[\mathrm{U}]=\mathrm{O} \cap \mathrm{X}$, then f is continuous.

Exercise 22. Suppose that $X \subseteq \mathbb{R}$ is open, and fix a point $x \in X$ and $\varepsilon>0$ such that $\mathrm{B}_{\varepsilon}(\mathrm{x}) \subseteq \mathrm{X}$. Given a function $\mathrm{f}: \mathrm{X} \rightarrow \mathbb{R}$, define $\delta: \mathrm{B}_{\varepsilon}^{\prime}(0) \rightarrow \mathbb{R}$ by

$$
\delta(h)=\frac{f(x+h)-f(x)}{h}
$$

Function $\mathrm{f}: \mathrm{X} \rightarrow \mathbb{R}$ is differentiable at x if for some $\ell \in \mathbb{R}$ it is true that $\lim _{h \rightarrow 0} \delta(h)=\ell$.

Argue that if $\mathrm{f}: \mathrm{X} \rightarrow \mathbb{R}$, is differentiable at x , then it is continuous at $\mathrm{x.}^{2}$
${ }^{1}$ Alternative notation is X^{∂}.
${ }_{2}$ Hint: when $x \neq \bar{x}$,

$$
f(x)=f(\bar{x})+\frac{f(x)-f(\bar{x})}{x-\bar{x}} \cdot(x-\bar{x}) .
$$

Exercise 23. Consider the problem of a consumer who must choose a bundle of $L \in \mathbb{N}$ perfectly divisible commodities. Assume that this individual can only consume positive amounts of these goods, so that her consumption space is $\mathrm{X}=$ $\mathbb{R}_{++}^{\mathrm{L}}$. The individual's preferences are a complete, reflexive and transitive binary relation \succsim on X , with \succ and \sim defined as usual: $x \succ x^{\prime}$ if it is not true that $\chi^{\prime} \succsim x$; and $x \sim x^{\prime}$ if it is true that $x \succsim x^{\prime}$ and that $x^{\prime} \succsim x$.

In this setting, \succsim is said to be strictly monotone if $x>x^{\prime}$ implies $x \succ x^{\prime}$, and strongly convex if for any x, any $x^{\prime} \neq x$ such that $x \succsim x^{\prime}$, and any $0<\alpha<1$, it is true that $\alpha x+(1-\alpha) x^{\prime} \succ x^{\prime}$. It is continuous if the weak preference relation is preserved at the limit: for every pair of convergent sequences $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(x_{n}^{\prime}\right)_{n=1}^{\infty}$ defined in X and satisfying that $x_{n} \succsim x_{n}^{\prime}$ at all $n \in \mathbb{N}$, one has that

$$
\lim _{n \rightarrow \infty} x_{n} \succsim \lim _{n \rightarrow \infty} x_{n}^{\prime}
$$

Finally, relation \succsim is represented by function $u: X \rightarrow \mathbb{R}$ if $u(x) \geqslant u\left(x^{\prime}\right)$ occurs when, and only when, $x \succsim x^{\prime}$. The following steps prove that if \succsim is strictly monotone, strongly convex and continuous, then it can be represented by a continuous utility function.

1. Fix $x \in X$, and define the sets

$$
\mathrm{B}=\left\{\mathrm{t} \in \mathbb{R}_{+} \mid \text {te } \succsim x\right\} \text { and } W=\left\{\mathrm{t} \in \mathbb{R}_{+} \mid x \succsim \mathrm{te}\right\}
$$

where $\mathrm{e}=(1, \ldots, 1)$. Argue there exist numbers $\overline{\mathrm{t}}$ and $\underline{\mathrm{t}}$ such that $\mathrm{B}=[\underline{\mathrm{t}}, \infty)$ and $W=[0, \bar{t}]$.
2. Argue that $\mathrm{B} \cap \mathrm{W} \neq \varnothing$.
3. Argue that $\mathrm{B} \cap \mathrm{W}$ is a singleton set.
4. Define $\mathfrak{u}(\mathrm{x})$ as the number for which $\mathfrak{u}(\mathrm{x}) \mathrm{e} \sim \mathrm{x}$. Argue that this assignment constitutes a function.
5. Argue that that u represents \succsim.
6. Argue that for every pair of numbers $\mathrm{a}, \mathrm{b} \in \mathbb{R}_{++}$,

$$
u^{-1}[(\mathrm{a}, \mathrm{~b})]=\left\{x \in \mathbb{R}_{+}^{\mathrm{L}} \mid x \succsim \mathrm{be}\right\}^{\mathrm{c}} \cap\left\{x \in \mathbb{R}_{+}^{\mathrm{L}} \mid \mathrm{ae} \succsim x\right\}^{\mathrm{c}} .
$$

7. Argue that for all numbers $a, b \in \mathbb{R}_{+}$, set $u^{-1}[(a, b)]$ is open.
8. Conclude that u is continuous.

Exercise 24. Let $X \subseteq \mathbb{R}^{K}$, where $K \in \mathbb{N}$, be non-empty, and suppose that functions $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ are continuous and satisfy that $f(x) \leqslant g(x)$ for all $x \in X$. Argue that the correspondence $\Gamma: X \rightarrow \mathbb{R}$, defined by

$$
\Gamma(x)=[f(x), g(x)]
$$

is non-empty- and compact-valued, and lower hemicontinuous.
Exercise 25. Let $X \subseteq \mathbb{R}^{K}$, where $K \in \mathbb{N}$, be non-empty, and suppose that functions $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ are bounded and continuous, and satisfy that $f(x) \leqslant g(x)$ for all $x \in X$. Argue that the correspondence $\Gamma: X \rightarrow \mathbb{R}$, defined by

$$
\Gamma(x)=[f(x), g(x)]
$$

is (non-empty- and compact-valued, and) upper hemicontinuous.
Exercise 26. Consider a society populated by a finite number of individuals who trade a finite number of commodities, $\ell=1, \ldots$, L. Denote the ($\mathrm{L}-1$)-dimensional simplex by

$$
\Delta,=\left\{p \in \mathbb{R}_{+}^{\mathrm{L}} \mid \sum_{\ell} p_{\ell}=1\right\}
$$

and let the aggregate excess demand function be $\mathrm{Z}: \Delta \rightarrow \mathbb{R}^{\mathrm{L}} .{ }^{3}$
A vector of competitive equilibrium prices is a root of the aggregate excess demand function, namely $p \in \Delta$ for which $Z(p)=0$. The economy is said to be determinate if every vector of (competitive) equilibrium prices is locally unique,
${ }^{3}$ Formally, let consumer i's utility function and endowment be, respectively, $u^{i}: \mathbb{R}_{+}^{L} \rightarrow \mathbb{R}$ and $w^{i} \in \mathbb{R}_{+}^{\mathrm{L}}$. The aggregate excess demand function is $Z: \Delta \rightarrow \mathbb{R}^{\mathrm{L}}$, is defined by

$$
Z(p)=\sum_{i}\left[x^{i}(p)-w^{i}\right],
$$

where

$$
x^{i}(p)=\operatorname{argmax}_{x}\left\{u^{i}(x): p \cdot x \leqslant p \cdot w^{i}\right\} .
$$

Assume that this function is well defined.
in the sense that for all $p \in \Delta$ for which $Z(p)=0$, there exists a number $\varepsilon>0$ such that for all $p^{\prime} \in B_{\varepsilon}^{\prime}(p) \cap \Delta, Z\left(p^{\prime}\right) \neq 0$. Assuming that the demand function is continuous, the following steps show that determinate economies have finitely many equilibria.

1. Argue that any sequence of equilibrium prices has a convergent subsequence, and that the limit of that subsequence is a vector of equilibrium prices too.
2. Argue that if one can construct a sequence of distinct vectors of equilibrium prices, then there exists some $p \in \Delta$ such that: (i) $Z(p)=0$, and (ii) for every $\varepsilon>0$ there exists $p^{\prime} \in B_{\varepsilon}^{\prime}(p) \cap \Delta$ for which $Z\left(p^{\prime}\right)=0$.
3. Argue that, as a consequence, if the economy is determinate, there exist only finitely many vectors $p \in \Delta$ such that $Z(p)=0$.

Exercise 27. Consider a two-person simultaneous-move game, where each player $\mathfrak{i}=1,2$ chooses an action s^{i} from a predetermined set Σ^{i}. A pair of strategies $\left(s^{1}, s^{2}\right)$ is a Nash equilibrium in pure strategies $i f$, for each i, s^{i} solves the problem

$$
\max _{\hat{s} \in \Sigma^{i}} u^{i}\left(\hat{s}, s^{\neg i}\right),
$$

where $\neg i$ is used to denote the agent other than i. The steps below prove the following theorem:

Theorem (Glicksberg). Suppose that for both i, set $\Sigma^{i} \subset \mathbb{R}$ is compact and convex, and function u^{i} is concave in s^{i} and continuous. Then, the game has a Nash equilibrium in pure strategies.

1. For each i, define the correspondence $\sigma^{i}: \Sigma^{\mathfrak{i}} \rightarrow \Sigma^{i}$, by

$$
\begin{equation*}
\sigma^{\mathfrak{i}}\left(s^{\neg i}\right)=\operatorname{argmax}_{\hat{s} \in \Sigma^{i}} u^{i}\left(\hat{s}, s^{\neg i}\right) . \tag{*}
\end{equation*}
$$

Argue that each σ^{i} is nonempty-, compact- and convex valued.
2. Argue that, moreover, each σ^{i} is upper hemicontinuous.
3. Define $\sigma: \Sigma^{1} \times \Sigma^{2} \rightarrow \Sigma^{1} \times \Sigma^{2}$ by $\sigma\left(s^{1}, s^{2}\right)=\sigma^{1}\left(s^{2}\right) \times \sigma^{2}\left(s^{1}\right)$. Argue that this correspondence has a fixed point.
4. Conclude that this proves Glicksberg's theorem.

Exercise 28. Let the matrix $R=\left(r^{1}, r^{2}, \ldots, r^{A}\right)$, of dimensions $S \times A$, be a financial market. Denote the set of prices that allow no arbitrage opportunities by

$$
\mathrm{Q}_{1}=\left\{\mathrm{q} \in \mathbb{R}^{A} \mid \mathrm{R} \vartheta>0 \Longrightarrow \mathrm{q} \vartheta>0\right\} ;
$$

and denote the set of rationalizable asset prices by

$$
\mathrm{Q}_{2}=\left\{\mathbf{q} \in \mathbb{R}^{\mathrm{A}} \mid \exists \pi \in \mathbb{R}_{++}^{S}: \pi \mathrm{R}=\mathbf{q}\right\} .
$$

1. Show that Q_{1} is non-empty and convex, and is a (positive) cone. ${ }^{4}$
2. Argue that Q_{2} is non-empty and convex, and is a (positive) cone.

3. Argue that $\mathrm{Q}_{2} \subseteq \mathrm{Q}_{1}$

Exercise 29. The space of sequences of real numbers can be written as \mathbb{R}^{∞}, where each element, for the sake of clarity, will be written as

$$
\vec{x}=\left(x_{1}, x_{2}, \ldots\right)=\left(x_{m}\right)_{m=1}^{\infty} .
$$

Let $\mathcal{B} \subseteq \mathbb{R}^{\infty}$ denote the subset that contains all bounded sequences in \mathbb{R}. A sequence $\left(\vec{x}_{n}\right)_{n=1}^{\infty}$ defined in \mathcal{B} is a sequence of sequences, where

$$
\vec{x}_{n}=\left(x_{n, 1}, x_{n, 2}, \ldots\right)=\left(x_{n, m}\right)_{m=1}^{\infty}
$$

is a bounded sequence defined in \mathbb{R}.
Sequence $\left(\vec{x}_{n}\right)_{n=1}^{\infty}$ is said to converge to \vec{x} pointwise if for each $m \in \mathbb{N}$,

$$
\lim _{n \rightarrow \infty} x_{n, m}=x_{m}
$$

[^0]It is said to converge to \vec{x} uniformly if for every $\varepsilon>0$ there exists an $n^{*} \in \mathbb{N}$ such that, for all $\mathrm{n} \geqslant \mathrm{n}^{*}$,

$$
\sup _{m \in \mathbb{N}}\left|x_{n, m}-x_{m}\right|<\varepsilon .
$$

The following exercises will show that uniform convergence implies, but is not implied by, pointwise convergence.

1. Argue that if $\left(\vec{x}_{n}\right)_{n=1}^{\infty}$ converges to \vec{x} uniformly, then it converges to \vec{x} pointwise.
2. Consider the sequence $\left(\vec{x}_{n}\right)_{n=1}^{\infty}$ constructed as follows:

$$
x_{n, m}= \begin{cases}1, & \text { if } m=n \\ 0 & \text { otherwise }\end{cases}
$$

Argue that this sequence converges to $\vec{x}=(0)_{m=1}^{\infty}$ pointwise, but not uniformly.

Exercise 30. Let $X \subseteq \mathbb{R}^{K}$, and denote by \mathbb{B} the set of all continuous, bounded functions $f: X \rightarrow \mathbb{R}$. Equip this set with the sup metric d. Argue that if $T: \mathbb{B} \rightarrow \mathbb{B}$ is a contraction, then for any $\mathrm{f} \in \mathbb{B}$, the sequence constructed by letting

$$
\mathrm{f}_{1}=\mathrm{f} \text { and } \mathrm{f}_{\mathrm{n}}=\mathrm{T}\left(\mathrm{f}_{\mathrm{n}-1}\right) \text { for all } \mathrm{n} \geqslant 2
$$

is Cauchy.
Exercise 31. Let $\mathrm{B} \subseteq \mathbb{R}^{K}$ be closed, and suppose that $\mathrm{f}: \mathrm{B} \rightarrow \mathrm{B}$ is such that, for some number $\alpha<1$, we have that for all $x, x^{\prime} \in B$,

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\| \leqslant \alpha\left\|x-x^{\prime}\right\| .
$$

1. Argue that there exists $\bar{x} \in B$ such that $f(\bar{x})=\bar{x}$.
2. Argue that the \bar{x} found before is unique.
3. Argue that for any $x \in B$, the sequence constructed by letting

$$
\mathrm{x}_{1}=\mathrm{x} \text { and } \mathrm{x}_{\mathrm{n}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{n}-1}\right) \text { for all } \mathrm{n} \geqslant 2
$$

converges to $\bar{\chi}$.

[^0]: ${ }^{4}$ That is, for all $\mathrm{q} \in \mathrm{Q}_{1}$, for all $\alpha \in \mathbb{R}_{++}, \alpha \mathrm{q} \in \mathrm{Q}_{1}$

