CuURsO DE ANALISIS REAL PARA EconNoMia
Escuela de Verano de Bogota 2022

Exercise 1. Let U be a unwverse. For any collection X of subsets of U, define

JX={xeU|XeX:xeX} and [|X={xelU|¥XeX xeX}.
XeX XeX

Argue that if X = @, then UxexX = D and NxexX = U.

Exercise 2. Formulate and prove generalized De Morgan’s laws that apply to

general collections of sets.
Exercise 3. Gwen sets A,B C X, prove that
1. ANBCA and A C AUB;
2. ANB=9<ACB°), ANB=A<ACB)and AUB=A<BCA).

Exercise 4. Let K € N be fized, and define the function § : RX x RX = R by

K
5(x,y) = > i — il
k=1

Argue that b satisfies the following properties (which mean that it is a metric
for R¥):

1. for all x,y € RX, §(x,y) > 0,

2. for all x,y € R¥, 8(x,y) = 8(y,x);

3. 8(x,y) =0 when, and only when, x =y, and
4. for all x,y,z € R¥, 8(x,y) < 8(x,z) + 8(z,y).

Exercise 5. Prove that if x € Ry, and y € R is such that |y — x| < x, then
y e R, .. Also prove that if x € R__ and y € R s such that |y — x| < —x, then
yeR__.

Exercise 6. Does the sequence (1/y/n)*_; have a limit? Is it Cauchy? How

about the sequence (3n/(n+/m))>_,?



Exercise 7. Does the sequence (3n/y/n)%_, converge?

Exercise 8. Consider a sequence (a,)¥_; in R and a number a € R. Prove that
if an, < «, for alln € N, and lim, ., a, = a, then a < «x. Svmilarly, if a, > «,

for alln € N, and lim,_,,, a, = a, then a > «.

Exercise 9. Recall the function § = RX x RX — R defined by

K
6(X7U) = Z |Xk _yk|:
k=1

which was introduced in Ezercise 4. Say that a sequence (x,)*_,, defined in R¥,
goes towards x € RX in a taxi if for every ¢ > 0, there ezists n* € N such that, for
all n > n*, §(xn,x) < &. Denote this fact by x,, ~ x.

Argue that if sequence (x,)_; goes towards x in a tazi, then it also converges

to x € RX.

Exercise 10. Given a sequence (a,)_; 1n R, define, for each n € N, the number

On =2 1, Qm, and call the expression

(o0}
D
n=1

the infinite series defined by sequence (a,)X_,. If 0, — 0 € R, we say that the

series converges to o, and write

o
E a, =0

n=1

1. Prove that if series ) ., a, converges, then sequence a, converges to 0.

2. The following steps are going to show that the converse statement is not

true, as a, — 0 does not suffice to imply that the series converges:

(a) argue that sequence

1,01 1 111 1 1 1
Y 21213137 31 ) m? Cttrm

where, for each m € N, the term 1/m appears m times, converges to 0;
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(b) argue that, for this sequence, (0,)_; is unbounded;

(c) argue that the series defined by this sequence does mot converge.

Exercise 11. Prove that if there exists a sequence (x,)X_; defined in X\ {x} that

converges to a point x, then x s a limit point of X.

Exercise 12. Consider a function f: X — R, where X C RX. Suppose that x € RX
1s a limat point of X and that y € R. Argue that lim, .5 f(x) = y if for every
sequence (xn)_, such that x,, € X\ {x}, for all n € N, and that lim,_,, X = X,

n=1

one has that lim,, ., f(xn) =y.

Exercise 13. Suppose that X =R and f: X — R 1s defined by

1/x, if x #0;

0, otherwise.

f(x) =

What s lim,_,5 f(x)? What s lim,_,o f(x)?

Exercise 14. Let f,g : X — R. Let x be a limit point of X. Suppose that for
numbers yi,ys € R one has that lim, .5 f(x) = y; and lim, .z g(x) = y,. Argue
that

lim (f + g)(x) = y1 + Yo.

X—X

Exercise 15. Prove the following statement: if (x,)°_; @S a sequence defined on

a compact set X, then it has a subsequence that converges to a point in X.

Exercise 16. We say that point x s an interior point of the set X, if there is some
€ > 0 for which B.(x) C X. The set of all interior points of X s called the interior
of X, and s usually denoted int(X). Note that int(X) C X.

1. Show that for every X, int(X) is open.
2. Show that X s open if, and only if, int(X) = X.

3. Prove that if x € int(X), then x is a limit point of X.



Exercise 17. Given a set X C RX, we define its closure, denoted by cl(X), as the
set

cd(X) ={x e R* | Ve >0,B.(x) N X # &}.

1. Prove that, given a set X C R¥, x € cl(X) #f, and only if, there ezists a

sequence (xn)%_; in X such that x,, — x.
2. Prowve that for every set X C RX, X C cl(X).

3. Prove that X 1s closed if, and only if, X = cl(X).

Exercise 18. Let X C R¥ be fized. A subset A C X is called dense (in X) if
X Ccl(A). Prove that if A is dense, then any point in X is either an element of

A or a limit point of A.

Exercise 19. A point x € R¥ is said to be in the boundary of set X C RX, if for
all e >0, B.(x) N X #£ @& and B.(x) N X® £ @. Let bd(X) be the set of all points in
the boundary of X.! Argue that bd(X) = cl(X) \ int(X).

Exercise 20. Argue that function f : RX — R s continuous if for all open set

U C R, one has that f1[U] is open.

Exercise 21. Let X C R¥ be non-empty and f : X — R. Argue that if for every
open set U C R, there exists an open set O C RX such that f~[U] = O N X, then

f 18 continuous.

Exercise 22. Suppose that X C R s open, and fiz a point x € X and ¢ > 0 such
that B.(x) C X. Gwen a function f: X — R, define 6:B.(0) - R by

f(x +h) — f(x)
- :

Function f : X — R 1s differentiable at x if for some { € R 1t 1s true that

Argue that if f: X — R, 1s differentiable at x, then it is continuous at x.>

5(h) =

1 Alternative notation is X°.
2 Hint: when x # X,
f(x) —f(x)

X—X

(x —X).



Exercise 23. Consider the problem of a consumer who must choose a bundle
of L € N perfectly divisible commodities. Assume that this individual can only
consume positive amounts of these goods, so that her consumption space 1s X =
RL . The individual’s preferences are a complete, reflezive and transitive binary
relation 7~ on X, with = and ~ defined as usual: x > x’ if it 1s not true that x' 7~ x;
and x ~x" if 1t is true that x 7 x’ and that x’ = x.

In this setting, 7~ s said to be strictly monotone if x > x" tmplies x > x’, and
strongly convex if for any x, any x’ # x such that x =~ x’, and any 0 < a < 1, 1t
1s true that oox + (1 — a)x’ = x’. It 1s continuous if the weak preference relation
1s preserved at the limit: for every pair of convergent sequences (x,)%_, and
(x])°_; defined in X and satisfying that x, 7 x), at all n € N, one has that

lim x,, 7 lim x/,.
n=—c0 n—o0

Finally, relation - is represented by function u: X — R 2f u(x) > u(x’) occurs

when, and only when, x 7 x'. The following steps prove that if - s strictly

monotone, strongly convexr and continuous, then it can be represented by a con-

tinuous utility function.

1. Fiz x € X, and define the sets
B={teR, [tezZx} and W={te R, |x te},

wheree = (1,...,1). Argue there exist numbers t and t such that B = [t, c0)
and W = [0, t].

2. Argue that BN'W # &.
3. Argue that BN'W 1s a singleton set.

4. Define u(x) as the number for which u(x)e ~ x. Argue that this assignment

constitutes a function.
5. Argue that that u represents .
6. Argue that for every pair of numbers a,b e R,
u (aq,b)]={xe€ R& | x 7~ be}* N{x € REr | ae = xJ°.
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7. Argue that for all numbers a,b € R, set u ![(a,b)] is open.
8. Conclude that u s continuous.

Exercise 24. Let X C R¥, where K € N, be non-empty, and suppose that functions
f: X =R and g: X — R are continuous and satisfy that f(x) < g(x) for all x € X.
Argue that the correspondence I' : X — R, defined by

158 non-empty- and compact-valued, and lower hemicontinuous.

Exercise 25. Let X C R¥, where K € N, be non-empty, and suppose that functions
f: X =R and g: X — R are bounded and continuous, and satisfy that f(x) < g(x)
for all x € X. Argue that the correspondence I' : X — R, defined by

1s (non-empty- and compact-valued, and) upper hemicontinuous.

Exercise 26. Consider a society populated by a finite number of individuals who
trade a finite number of commodities, { =1,...,L. Denote the (L—1)-dimensional
simplex by

A= {p e R T ope—1},

and let the aggregate excess demand function be Z : A — RE.3
A wvector of competitive equilibrium prices s a root of the aggregate excess
demand function, namely p € A for which Z(p) =0. The economy s said to be

determinate if every vector of (competitive) equilibrium prices is locally unique,

3 Formally, let consumer i’s utility function and endowment be, respectively, u' : ]R}r — R and

wt € RL. The aggregate excess demand function is Z : A — RL, is defined by
Z(p) = X [x'(p) —w'),

where

xi(p) = argmax,, {ui(x) p-x<p -wi} .

Assume that this function is well defined.



in the sense that for all p € A for which Z(p) = 0, there exists a number ¢ > 0
such that for all p’ € BL(p) N A, Z(p') # 0. Assuming that the demand function
15 continuous, the following steps show that determinate economies have finitely

many equilibria.

1. Argue that any sequence of equilibrium prices has a convergent subsequence,

and that the limait of that subsequence is a vector of equilibrium prices too.

2. Argue that if one can construct a sequence of distinct vectors of equilibrium
prices, then there exists some p € A such that: (i) Z(p) = 0, and (ii) for
every ¢ > 0 there exists p’ € B.(p) N A for which Z(p’) = 0.

3. Argue that, as a consequence, if the economy 1s determinate, there ezxist

only finitely many vectors p € A such that Z(p) = 0.

Exercise 27. Consider a two-person simultaneous-move game, where each player
i = 1,2 chooses an action s* from a predetermined set L'. A pair of strategies
(s!,s2) is a Nash equilibrium in pure strategies if, for each i, s' solves the problem
maxu'(§,s ),
sest
where —1 1s used to denote the agent other than i. The steps below prove the

following theorem:

Theorem (Glicksberg). Suppose that for both i, set £' C R is compact
and convez, and function u' is concave in s* and continuous. Then,

the game has a Nash equilibrium in pure strategies.
1. For each i, define the correspondence o' : L™t — L!, by
o'(s") = argmax, 5 U (3,5 ). (%)
Argue that each ¢ is nonempty-, compact- and conver valued.

2. Argue that, moreover, each o' is upper hemicontinuous.



3. Define 0: X! x £2 — X! x 22 by o(s?, s?) = ol(s?) x 02(s!). Argue that this

correspondence has a fized point.

4. Conclude that this proves Glicksberg’s theorem.

Exercise 28. Let the matriz R = (r1,72,...,1"), of dimensions S x A, be a fi-
nancial market. Denote the set of prices that allow no arbitrage opportunities
by

Q:={qeR* RO >0 = qd > 0};

and denote the set of rationalizable asset prices by
Q:={qeR* | IneR3, : R = q}.
1. Show that Q; is non-empty and convez, and is a (positive) cone.*

2. Argue that Q. is non-empty and convez, and is a (positive) cone.

3. Argue that Q, C Q;

Exercise 29. The space of sequences of real numbers can be written as R*, where

each element, for the sake of clarity, will be written as

X = (x1,%2,...) = (Xm)?ﬁ:l-

Let B C R* denote the subset that contains all bounded sequences in R. A

sequence (X,)%_, defined in B is a sequence of sequences, where

%n = (Xn,l;xn,Z) .. ) = (Xn,m)ﬁzl

15 a bounded sequence defined in R.

Sequence (X,)_; is said to converge to X pointwise if for each m € N,

lim Xpm = Xm.
n— o0 !

4 That is, for all ¢ € Qq, forall x € R, aq € Q;



It 1s said to converge to X uniformly if for every ¢ > 0 there exists an n* € N such

that, for all n > n*,

SUP [Xnm — Xm| < €.
meN

The following exercises will show that uniform convergence implies, but s not

implied by, pointwise convergence.

1. Argue that if (X)X, converges to X uniformly, then it converges to X point-

wise.

2. Consider the sequence (X,)_; constructed as follows:

1, if m=n,
Xn7m - .
0 otherwise.

Argue that this sequence converges to X = (0)%°_, pointwise, but not uni-

formly.

Exercise 30. Let X C R¥, and denote by B the set of all continuous, bounded
functions f : X — R. Equip this set with the sup metric d. Argue thatif T: B — B

18 a contraction, then for any f € B, the sequence constructed by letting
fi=1f and f, =T(f_1) forall n>2
1s Cauchy.

Exercise 31. Let B C RX be closed, and suppose that f: B — B is such that, for

some number « < 1, we have that for all x,x’ € B,
1£0x) = ()| < edflx —x[].
1. Argue that there exists x € B such that f(x) = X.
2. Argue that the x found before 1s unique.
3. Argue that for any x € B, the sequence constructed by letting
x1 =% and X, = f(xn_1) forall n>2

converges to X.



