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The �rst person to talk about the concept of general equilibriumwas LeonWalras (France,
1834-1910). Son of an economist, Walras was one of the most prominent marginalists,
alongside W. Jevons (England, 1831-1882) and C. Menger (Austria, 1840-1921). On top of
the methodological importance of his ideas, which started the process of mathematization
of economics, the �rst contributions of Walras gave foundation to a great deal of modern
economic thought. On one hand, it was Walras who �rst considered the systematic de-
termination of supply and demand in multiple markets.1 He also was the �rst scholar to
explicitly derive demand and supply as solutions to optimization problems, and to de�ne
equilibrium by combining this determination of demand and supply with market clear-
ing.

In spite of the normative nature of his research interests,Walras decided that the�rst ques-
tions that had to be answered were of a positive character. The �rst problem he tackled
was existence of equilibrium. His answer was simplistic: he observed that the equilibrium
concept displayed consistency in terms of the number of equations required for market
clearing and the number of variables available to obtain it. Similarly, he introduced the
idea of a �ctitious auctioneer who adjusts prices according to excess demand/supply until
equilibrium is attained. Unfortunately, he oversimpli�ed things and took it for granted
that the mentioned coincidence of free variables and equations guaranteed existence of
equilibrium and thought it obvious that the auctioneer would guarantee its stability. Un-
der the impression that these positives issues were dealt with, Walras moved on to norma-
tive questions such as how aggregate wealth should be distributed and increased.

Walras, by then a Professor at Lausanne, failed in his attempts to popularize his ideas in the
profession and, in fact, only his de�nitions and his �awed positive results are nowadays
part of economic thought. Finding himself in poor health,2 he decided to �nd the appro-
priate person to take over his position at Lausanne and continue his research agenda. An
Italian friend of his recommended a young engineer and economist, with strong math
background: Wilfredo Pareto (Italian noble, born during the exile of his father in France,
1884-1923). Despite great personal and ideological di�erences,3 Walras left Pareto the
position at Lausanne and his intellectual project... or so he thought.

Pareto’s contributionswere numerous, but sowere also the di�erenceswithWalras’s anal-
ysis.4 The �rst di�erence was Pareto’s departure from utilitarianism, which had been im-
plicit in Walras’s work and which at the time was, in fact, mainstream economics. Pareto

1 Having learned about F. Quesnay’s Tableau, which is the basis of modern input-output analysis.
2 Mental, some say.
3 Walras being a bourgeois, shy, social idealist; Pareto not only a noble, but in fact a rather arrogant,

pragmatic, laissez-faire liberal.
4 Pareto himself said that, had he wanted, he could have written his theory in total independence from

Walras’s work, which is true.
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thought that one can actually do away with the concept of utility function, using instead
the more general concept of preference relation.

Besides, Pareto completely departed from the equilibrium concept introduced by Walras.
For him, equilibrium in a social system occurred at any situation in which the tension
between what individuals want and what is socially possible is maximal: with the avail-
able resources, improving someone’s condition would make someone else worse o�—the
exact opposite of utilitarianism, as interpersonal comparisons are ruled out. Additionally,
Pareto opened the debate about the implementation of desired outcomes through policies,
when he proposed the idea that, being Walrasian equilibrium just the solution to a sys-
tem of equations, a government could simply solve this system and impose the allocation
without the need for functioning markets—an idea that ignores a crucial informational
problem.5

In spite of his math background, Pareto’s work was far from formal. It is nowadays clear,
though, that his work was possible thanks in part to the contemporaneous contribution
of Francis Ysidro Edgeworth (Irish/English/half-Catalonian, 1845-1926). After his parents
and six siblings died,6 Edgeworth had inherited very handsomely and could dedicate his
life to pure academic work in spite of great di�culties getting a position in any prestigious
institution. A self-educated mathematician and lawyer, his �rst works in economics were
under the marginalist-utilitarian tradition,7 and led him to the de�nition of social indi�er-
ence curve. On top of this enormous methodological contribution, Edgeworth had other
in�uential ideas: he studied the set of exchange outcomes to which no individual, or group
of individuals could independently oppose by isolating themselves from the exchange. He
conjectured that as the number of agents increased such set would reduce to the set of
equilibrium outcomes, as de�ned by Walras.

Edgeworth dropped his work in economics for a while and started to work in probability
theory, where he made important contributions, until he was o�ered an economics pro-
fessorship at Oxford and the editorship of the prestigious Economic Journal. From then
on, he continued to contribute to Walrasian equilibrium theory, obtaining in particular
some paradoxical results (that were then dismissed, but which we now know are correct)
and working on imperfect competition models.

Edgeworth’s work was not massively read on his days.8 Besides Pareto, a notable ex-
ception was Irving Fisher (USA, 1867-1947). An economist at Yale, Fisher was impor-
tant not only because of his formalization of Walras’s ideas, pretty much to how we ex-

5 Pareto retired from Lausanne, somewhat depressed given Italy’s political situation. The Fascist party
tried in many ways to recruit him, but he never accepted. After his death, the party used his name rather
liberally, though.

6 WTF!
7 He really believed in utilitarianism: he at some point said that, since men are more capable of experi-

encing pleasure than women, it is optimal for the society that men consume more than women. No wonder
he died single!

8 Being very elegant from a mathematical point of view, many of the economists of the time found his
papers unreadable. On top of that, it didn’t help that he used to shy away from controversy, even when the
attacks to his ideas were incorrect.
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press them today, but also because, independently of Edgeworth, he de�ned the individ-
ual indi�erence curve, and, indirectly, gave a correct existence argument: he designed
and built a hydraulic machine that correctly computed equilibrium prices for exchange
economies.9

To a large extent, between 1910 and 1940 the important contributions to equilibrium
theory stopped. This situation changed when, by coincidence, Kenneth Arrow (USA,
1921-2017) and Gerard Debreu (France, 1921-2004) arrived at the Cowles Commission in
Chicago in 1946.

Arrow was a mathematical statistician, working his Ph.D. dissertation at Columbia under
H. Hotelling (USA, 1895-1973). Right since the dissertation, Arrow began his career with
seminal contributions.10 First, he substantially weakened the theoretical foundations of
utilitarianism, when he showed that under certain axioms it is impossible to aggregate
individual preferences into a social welfare function. Secondly, while in Cowles, Arrow
showed that the di�erences between Walras’s and Pareto’s ideas were not as deep as pre-
viously thought: �rst, equilibria in the sense of Walras were also equilibria in the sense
of Pareto, and, second, equilibria in the sense of Pareto can be implemented via equilibria
in the sense of Walras, upon redistribution of individual resources.

These two last results, the crux of the Paretian agenda, are currently known as the fun-
damental theorems of welfare economics. It was a coincidence that, independently but at
the same time, and also in Cowles, Debreu was successfully working on the same prob-
lems.

A mathematician by formation, Debreu also arrived in Cowles upon suggestion of his
Ph.D. advisor, M. Allais (France, 1911-2010). It was obvious for him that Walras’s exis-
tence argument was �awed and worked on a general, mathematically correct alternative
argument. T. Koopmans (Holland, 1910-1985), then director of Cowles, read early drafts
of what both Arrow and Debreu were writing and realized that, despite di�erences in ap-
proach and formalization, they were obtaining essentially the same results. Koopmans
convinced them of the bene�ts of joining forces, and in doing so formed the team that
obtained what some people consider the most important result ever in economic theory:
using novel mathematical tools, they showed weak conditions under which competitive
equilibrium is guaranteed to exist.11 It is now commonly thought that a good understand-

9 Fisher also designed a tent for the treatment of tuberculosis, a device that computed the caloric content
of diets, and the Rolodex—the patent of which he sold to Remington for $660.000. Unfortunately for him,
just before the big crash of the NYSE on 1929, he, publicly, convinced some investors that shares were not
overpriced and had, instead, found a correct, higher equilibrium price (to quote him: “Stocks have reached
what looks like a permanently high plateau”).

10 And not only in economics: during ����, Arrow studied the way in which wind currents can be
used to improve aircraft speed and e�ciency during �ight; these early contributions are still in�uential in
modern day air tra�c planning and management.

11 To be fair, at about the same time Lionel McKenzie (USA, 1919-2010) was working on the existence
problem at Rochester, and published a valid result shortly before Arrow and Debreu published theirs, but
based on less primitive principles: he started from the demand functions and not from the preferences. This
caused some controversy, in particular because there are reasons to think that Debreu knew of McKenzie’s
work and didn’t acknowledge it, not even to Arrow. In order to recognize McKenzie’s contribution, some
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ing of the consistency of a model is obtained only after the determination conditions that
are su�cient for existence of its proposed solutions.

Their agenda did not stop there. Arrow studied the issue of uniqueness and showed that
the conditions for it are extremely restrictive. Debreu, on the other hand, showed that the
equilibrium need not be unique or stable, although in almost all economies it is locally
unique and, in fact, there are a �nite number of equilibria. Besides, in joint work with
H. Scarf (USA, 1930-2015), Debreu showed that Edgeworth was right in his conjecture
that by increasing the number of agents, the set of allocations to which no individual or
group of individuals object shrinks to only the Walrasian equilibrium allocations. Also,
independent work by them, established the canonical model for the study or risk and
dynamics in economics and �nance.

A very proli�c author in many �elds, Arrow won the Nobel price in 1972 while Debreu
got it eleven years later. For a while, they were coaches of the football teams of graduate
students at Stanford and U.C. Berkeley, respectively. Sadly, Debreu passed away on New
Year’s eve, 2004, in Paris; and Arrow on February 21st, 2017, in Palo Alto, CA.

economists refer to this part of the literature as the Arrow-Debreu-McKenzie argument.
Also, not everyone considers the existence result to be a great achievement, in particular because it set

the standard of mathematical formality that is followed today. According to some critic, the work itself is
“the beginning of what has since become a cancerous growth in the very center of microeconomics.”
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1. T�� E������

There is a �nite number, L 2 N, of commodities, each of which can be consumed in
any non-negative amount. Each commodity is denoted by ` = 1, . . . ,L, used as a sub-
index.

A consumer is a pair (u : RL
+ ! R,w 2 RL

+), where u represents the individual’s
preferences and w is her endowments. The standard properties of preferences may be
imposed.1 Additionally, u is said to be smooth if it is C2(RL

++), di�erentiably strictly
monotone and di�erentiably strictly quasiconcave, and

{x̃ 2 RL
+ | u(x̃) > u(x)} ✓ RL

++,

for all x 2 RL
++.2 The reason why smoothness is useful is that it ensures that the demand

functions are interior, if w 2 RL
++, and di�erentiable.

A �rm is a non-empty set Y ✓ RL, which represents its technology. The standard prop-
erties of preferences may be imposed as well.

For �nite numbers I, J 2 N, de�ne the sets I = {1, . . . , I} and J = {1, . . . , J}. Set I is the
society, and we refer to its members by the i = 1, . . . , I. Similarly, set J is the industry,
and we use the super-index j = 1, . . . , J to denote the �rm Yj. If there is no production,
super-index i which denotes the individual (ui,wi); if there is production individual i is
augmented to [ui,wi, (si,j)j2J], where si,j > 0 represents the share of consumer i in the
stock of �rm j, so

P
i s

i,j = 1 for all j.
D��������� 1. An exchange economy is {I, (ui,wi)i2I}. A standard exchange economy
is one in which each ui is continuous, locally-nonsatiated and quasiconcave. A smooth ex-
change economy is one in which each ui is smooth and each wi 2 RL

++.
D��������� 2. A production economy is

{I, J, [ui,wi, (si,j)j2J]i2I, (Yj)j2J}.

A standard production economy is one in which each ui is continuous, locally-nonsatiated
and quasiconcave, and each Yj is closed and convex, and satis�es free-disposal and possibility
of inaction.

It is important to notice that these de�nitions do impose a key institution by assumption:
we are describing economies of private property.

1 We assume that individuals have representable preferences only for convenience. For this reason, we
may interchangeably say that the individual has convex preferences and that u is quasiconcave.

2 This last property is referred to as “interiority.” An alternatively assumption is that for every sequence
(xn)1n=1 in RL

++, if it converges to some x in @RL
+, then it is true that ||Du(xn)||-1Du(xn) · xn ! 0 and

||Du(xn)|| ! 0.
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In what follows, we use xi and yj to denote, respectively, individual i’s consumption
bundle and �rm j’s production net-put. A pro�le of consumption plans is denoted by
~x = (xi)i2I) and one of production plans by ~y = (yj)j2J).

2. C���������� E���������

If we add a second institution, competitive markets, we obtain the de�nitions of compet-
itive equilibrium. Let p = (p`)L`=1 2 RL denote prices. In an exchange economy with
competitive markets, the only constraint that individual i faces is that her consumption
cannot lie outside the set

{x 2 RL
+ | p · x 6 p ·wi

}.
If it is a production economy, and production levels are (yj)j2J, then individual i faces
the budget set �

x 2 RL
+ | p · x 6 p ·wi +

P
j s

i,jp · yj
 
.

D��������� 3. On an exchange economy, a competitive equilibrium is (p,~x) such that:

1. for all i 2 I, xi solves

max
x

�
ui(x) : x 2 RL

+ and p · x 6 p ·wi
 
;

and

2.
P

i x
i =

P
i w

i.

When I = L = 2, a graphical representation of the economy, its equilibria and other
concepts is obtained via Edgeworth boxes.
D��������� 4. In a production economy, a competitive equilibrium is (p,~x,~y) such that

1. for all i 2 I, xi solves

max
x

�
ui(x) : x 2 RL

+ and p · x 6 p ·wi +
P

j s
i,jp · yj

 
;

2. for all j 2 J, yj solves maxy
�
p · y : y 2 Yj

 
; and

3.
P

i x
i =

P
iw

i +
P

j y
j.

Again, notice assumptions implicit in the de�nition: (i) it is assumed, as an institution,
that there exists a complete set of markets to which all agents have unrestricted access;
(ii) it is assumed, as a rule of behavior, that all agents are price takes; (iii) there are no
external e�ects; and (iv) all commodities are privately consumed. Many results depend
crucially on these assumptions.

3. P����� E���������

In an exchange economy, an allocation is a pro�le ~x such that
P

i x
i =

P
i w

i; in a
production economy, an allocation is (~x,~y) such that yj 2 Yj for each j, and

P
i x

i =P
i w

i +
P

j y
j.
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Competitive equilibrium is the canonical non-cooperative (some people say ‘individu-
alistic’) viewpoint. The simplest form of cooperative solution is the concept of Pareto
e�ciency:
D��������� 5. Given an exchange economy, an allocation ~x is Pareto e�cient if there does
not exist another allocation (x̂i)i2I such that:

1. for all i 2 I, ui(x̂i) > ui(xi); and

2. for some i 2 I, ui(x̂i) > ui(xi).
D��������� 6. Given a production economy, an allocation (~x,~y) is Pareto e�cient if there
does not exist another allocation [(x̂i)i2I, (ŷj)j2J] such that

1. for all i 2 I, ui(x̂i) > ui(xi); and

2. for some i 2 I, ui(x̂i) > ui(xi).

It is important to notice that: (i) Pareto e�ciency does away with the institutions of com-
petitive markets (and hence prices) and private property; (ii) it does not replace the latter
institutions by an alternative mechanism; and (iii) in production economies, only the wel-
fare of consumers, and not the pro�t of the �rms, matters.

4. T�� C���

If one maintains the institution of private property and some of the self-interest of indi-
viduals, one can re�ne the de�nition of Pareto e�ciency to a “cooperative” solution for
exchange economies:
D��������� 7. An allocation x is in the core of an exchange economy if there do not exist
H ✓ I and (x̂i)i2H such that:

1.
P

i2H
x̂i =

P
i2H

wi;

2. for all i 2 H, ui(x̂i) > ui(xi); and

3. for some i 2 H, ui(x̂i) > ui(xi).

De�ning the core of a production economy is possible, but requires further institutional
assumptions.
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LN2: Walras’s Law

Recall that:

1. if utility function u is locally nonsatiated and x⇤ solves

max
x

{u(x) | x > 0 and p · x 6 p ·w} , (1)

then p · x⇤ = p ·w; and

2. if u is strongly monotone and the consumer problem has a solution, then p 2 RL
++.

Also, notice that if p 2 RL
++, then the domain of Program (1) is the same if the prices are

multiplied by a positive constant.

These observations imply the following result.
T������ 1 (W�����’� ���). In an exchange economywhereu1 is strongly monotone and every
other ui is locally non-satiated. Suppose that (p, x) is such that

1. for all i, xi 2 argmaxB(p,wi) u
i(x); and

2. for all ` 6 L- 1,
P

i x
i
` =

P
iw

i
`.

Then, (p, x), ✓
1
p1

p, x
◆
,

✓
1
||p||

p, x
◆
,

and ✓
1P
` p`

p, x)
◆

are all competitive equilibria.

In practice, the result says that when looking for the equilibria of an economywithmonotone
consumers, it su�ces to guarantee that all of the markets but one clear. In technical terms,
this says that the L ⇥ L system of market clearing conditions is under-determined, and is
in fact an L ⇥ (L - 1) system: there is nominal price indeterminacy. So, one can drop one
variable, say by letting p1 = 1, and solving an (L- 1)⇥ (L- 1) system!

The latter is a “numéraire” normalization (with the �rst commodity as numéraire) and con-
�nes prices to set

{p 2 RL
+ | p1 = 1}.

Alternative price normalizations are on the sphere,

S = {p 2 RL
+ | kpk = 1},
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or on the (L- 1)-dimensional simplex,

� = {p 2 RL
+ |

P
` p` = 1}.

Notice that all these sets are smaller than RL
+ and, in particular, that normalization on the

sphere and the simplex compacti�es the space of prices.
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LN3: Existence of competitive equilibrium

The following is one of the most important theorems in the history of economics: we will
prove that in exchange economies where

P
i w

i � 0 and that each ui is continuous, strictly
quasi-concave and strictly monotone, there always exists a competitive equilibrium. Before
a formal proof, some informal intuition is given.

In what follows, we denote by� the (L-1)-dimensional unit simplex, and let�� = �\RL
++

and �@ = � \ �o.1 The aggregate excess demand function over strictly positive prices,
Z : �� ! RL, is de�ned by Z(p) =

P
i[x

i(p)-wi], where

xi(p) = argmaxx
�
ui(x) : x > 0 and p · x 6 p ·wi

 
.

1. A� I������� A�������

Walras had in mind a price adjustment process relatively obvious: if a market exhibits excess
demand (supply), its relative price should go up (resp. down). We nowde�ne amotion process
re�ecting Walras’s idea, just as a didactic tool for the existence argument: after observing
Z(p), the auctioneer calls new prices in an attempt to clear markets— he makes excessively
demanded goods cheaper, and excessively supplied goods more expensive.

The simplest rule,2
p 7! p+ Z(p),

may violate non-negativity of prices, whereas3

p 7! (max {p` + Z`(p), 0})L`=1

need not map into the simplex. So, the auctioneer4 implements the following rule:

p 7! �(p) =

✓
max {p` + Z`(p), 0}P
` 0 max {p` 0 + Z` 0(p), 0}

◆L

`=1
,

which will always leave him in the simplex.5

In a standard economy, � is continuous and hence, by Brower’s �xed-point theorem, there
exists p 2 � such that �(p) = p. Ignore, for simplicity, the denominator on the de�nition

1 The standard notation for the boundary would be @�, but I like �@ more.
2 “Just increase each price by its excess demand!”
3 “OK, do the obvious thing, but don’t go below zero.”
4 After thinking for a little while.
5 Obviously, this requires

P
` max {p` + z`(p), 0} > 0, the proof of which is left as an exercise.
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of �, which is no problem by the homogeneity of demands. What we now have is that for
each `, p` = max {p` + Z`(p), 0}. If p` > 0, then p` = p` + Z`(p) and, hence, Z`(p) = 0.
Alternatively, if p` = 0, then Z`(p) 6 0, which would be impossible under strictly mono-
tone preferences. It follows that [p, (xi(p)]i2I] is a competitive equilibrium of the given
economy!

Of course, this argument is informal and has obvious problems, in particular that it requires
that demands be de�ned even for boundary prices. A formal theorem and proof are given
next.

2. T�� F����� A�������

T������ 2 (A���� ��� D�����). In an exchange economy, suppose that
P

i w
i � 0 and

that each ui is continuous, strictly quasi-concave and strictly monotone. Then, there exists a
competitive equilibrium.

Let us take for granted that, under the assumptions of the theorem, function Z is contin-
uous and bounded below; satis�es that p · Z(p) = 0 for all p 2 ��; and is such that
max` {Z`(pn)} ! 1 for any sequence (pn)1n=1 in �� such that pn ! p 2 �@.

Assuming these properties, the proof of the theorem is as follows: De�ne correspondence
� : � ⇣ � by:

�(p) =

�
argmax� {� · Z(p) : � 2 �} , if p 2 ��;
{� 2 � | p · � = 0}, if p 2 �@.

We �rst argue the following �ve claims:

1. Correspondence � is nonempty-, compact- and convex-valued.

That �(p) 6= ? when p 2 �� follows from Weierstrass’s theorem, since � is compact.
Now, suppose that p 2 �@. By de�nition, there is an l = 1, . . . ,L, for which p` = 0. If
we let �` = 1 and �` 0 = 0 for all ` 0 6= `, it is immediate that � 2 �(p).

That � is bounded-valued is immediate, since � is bounded. That it is closed-valued
follows by construction, since � is closed and limits preserve weak inequalities.

That � is convex-valued follows from convexity of� and linearity of the inner product.

2. If p 2 �� and Z(p) 6= (0, . . . , 0) then �(p) ✓ �@.

Since p 2 ��, we have that p · Z(p) = 0. Since Z(p) 6= 0, there must then be an ` for
which Z`(p) < 0. If � 2 �(p), it then follows by construction that �` = 0.

3. If p 2 �@, then p /2 �(p).

If p 2 �@ ✓ �, we have that p 6= 0, and, hence, p · p 6= 0.
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4. � is upper hemi-continuous at all p 2 ��.

This is immediate from the Theorem of the Maximum, since the objective function of
the problem that de�nes � on �� is continuous.

5. � is upper hemi-continuous at all p 2 �@.

This case is more complicated. Fix p 2 �@, (pn)1n=1 in � such that pn ! p, and
(�n)1n=1 in � such that �n 2 �(pn) for each n. Since � is compact, by the Theorem
of Bolzano-Weierstrass there exists a subsequence, (�nm)

1
m=1, and a � 2 � such that

�nm ! �.

Suppose �rst that (pnm)
1
m=1 has no subsequences in ��. Since pnm ! p, for some

m⇤ 2 N we have that for allm > m⇤, pnm 2 �@ and pnm · �nm = 0, so p · � = 0.

Alternatively, it must be true that (pnm)
1
m=1 has a subsequence in ��, (pnmk

)1k=1. We
now argue that there exists k⇤ 2 N such that, for all k > k⇤ and all ` such that p` > 0,

Z`(pnmk
) < max

` 0

⌦
Z` 0(pnmk

)
↵
.

To see that this is the case, take the subsequence (pnmk
)1k=1 in ��. Since pnmk

! p 2
�@, by the property of Z assumed above we know that

max
`

{Z`(pnmk
)} ! 1

as k ! 1. For any ` such that p` > 0, sequence (Z`(pnmk
))1k=1 is bounded above.

Thus, there exists k⇤ 2 N such that

Z`(pnmk
) < max

` 0
{Z` 0(pnmk

)}

for all k > k⇤ and all ` such that p` > 0. It follows that for all k > k⇤ and all ` such
that p` > 0, one has that �`,nmk

= 0 and, hence, pnmk
· �nmk

= 0. Again, this implies
that p · � = 0.

In both cases, we conclude then that � 2 �(p).

The last two claims imply that � is upper hemi-continuous. By Claim 1 and Kakutani’s �xed
point theorem, there exists some p 2 � such that p 2 �(p). By Claim 3, p 2 ��, and, hence,
by Claim 2, Z(p) = 0.

It follows that [p, (xi(p))i2I] is a competitive equilibrium.

A�������

To complete the proof of the theorem, we need, of course, to argue the properties of function
Z that were taken for granted.
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First, strict quasiconcavity of all utility functions guarantees that Z is a function and not a
correspondence. It is continuous, as it is the sum of functions that are continuous by the
Theorem of the Maximum. It is bounded below by construction, since demands are non-
negative: for all p 2 ��, Z(p) > P

i w
i. And that p · Z(p) = 0 follows from the fact that

each ui is strctly monotone. Now, the only missing step is to prove that max` {Z`(pn)} ! 1
for all sequences (pn)1n=1 in �� such that pn ! p 2 �@.

To see that this is the case, �x one such sequence (pn)1n=1 and suppose that it is not true that
max` {Z`(pn)} ! 1. Then, for some x 2 R it is true that for all n⇤, there exists n > n⇤

such that max` {Z`(pn)} 6 x. Since Z is bounded below, there exists (pnm)
1
m=1 such that

(Z(pnm))
1
m=1 is bounded. Since

P
i w

i � 0, then for some i we must have p ·wi > 0. Fix
one such i. Since (Z(pnm))

1
m=1 is bounded, then (xi(pnm))

1
m=1 is bounded and, hence, has

a convergent subsequence.

For notational simplicity, assume that (xi(pnm))
1
m=1 itself converges to x 2 RL

+. Let ˜̀ be
such that p ˜̀ = 0, and let x̃ 2 RL

+ be de�ned as follows:

x̃` =

�
x`, if ` 6= ˜̀;
x ˜̀ + 1 if ` = ˜̀.

Since x̃ > x, ui(x̃) > ui(x). By continuity, there is some ✏ > 0 such that, for all x 0 2
B✏(x̃) \ RL

+ and all x 00 2 B✏(x), ui(x 0) > ui(x 00). Since xi(pnm) ! x, there exists some
m1 2 N such that for all m > m1, xi(pnm) 2 B✏(x). Fix ` 0 such that p` 0 > 0. De�ne
(xnm)

1
m=1 as follows:

x`,nm =

8
<

:

xi˜̀(pnm) + 1, if ` = ˜̀;
xi` 0(pnm)-

✏
2 , if ` = ` 0;

xi`(pnm), otherwise.

Since p` 0,nm ! p` 0 > 0 and p ˜̀ ,nm
! p ˜̀ = 0, there exists m2 2 N such that for all

m > m2,
-
✏

2
· p` 0,nm + p ˜̀ ,nm

< 0.

Now, letm > max {m1,m2}. Then,

pnm · xnm = pnm · xi(pnm) + p ˜̀ 0,nm
-

✏

2
· p` 0,nm

< pnm · xi(pnm)

6 pnm ·wi,

and, nonetheless, xi(pnm) 2 B✏(x) and xnm 2 B✏(x̃), so

ui(xnm) > ui(xi(pnm)),

which is a contradiction.
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LN4: The SMD Theorem: multiplicity and instability

For the purposes of this lecture, let prices be normalized to the sphere, de�ned as

S = {p 2 RL
++ | ||p|| = 1}.

For any " > 0, we shall say that exchange economy {I, (ui,wi)i2I} generates Z : S ! RL

in
S" = {p 2 S | 8`,p` > "},

if, for all p 2 S",
P

i[x
i(p)-wi] = Z(p).

T������ 2 (T�� S������������M������D�����, SMD, T������). Let Z : S ! RL be
continuous and satisfyWalras’s law.1 For every " > 0, there exists a standard exchange economy
that generates Z in S".

It must be emphasized that, in the particular economy constructed for the theorem, I =
{1, . . . ,L}, and that the implication of the theorem fails if the condition that I < L is im-
posed.

In what follows, we prove a less ambitious result, for the case when L = 2:

T������ 3 (V��� ���� SMD). Let Z : S ! R2 be continuous and satisfy Walras’s law. There
exist two “individual excess demand” functions z1, z2 : S ! R2 such that:

1. each zi satis�es Walras’s law: for all p, p · zi(p) = 0.

2. each zi satis�es WARP in S✏: for every p̄, p̂ 2 S✏,
✓

p̂ · zi(p̄) 6 0
zi(p̂) 6= zi(p̄)

◆
) p̄ · zi(p̂) > 0;

3. z1(p) + z2(p) = Z(p) for all p 2 S.

Proof. Since z is continuous and S" is compact, there exists ↵ 2 R such that

Z(p) + ↵p > (1, 1) (⇤)

for all p 2 S".

De�ne z1, z2 : S ! RL by

z1(p) = [Z1(p) + ↵p1][(1, 0)- p1p),
1 That is, that for all p 2 S, p · Z(p) = 0.

1



and
z2(p) = [Z2(p) + ↵p2][(0, 1)- p2p].

By direct computation, letting e1 = (1, 0) and e2 = (0, 1),

p · zi(p) = p · {[Zi(p) + ↵pi](e
i - pip)}

= [Zi(p) + ↵pi]p · (ei - pip)

= [Zi(p) + ↵pi](pi - pip · p)
= [Zi(p) + ↵pi](pi - pikpk2)
= 0,

which is to say that zi satis�es Walras’s law.

On the other hand, for p,p 0 2 S", Eq. (⇤) implies that

p · zi(p 0) 6 0 ) p · {[Zi(p
0) + ↵p 0

i](e
i - p 0

ip
0)} 6 0

) [Zi(p
0) + ↵p 0

i][pi - p 0
i(p

0 · p)] 6 0
) pi - p 0

i(p
0 · p) 6 0

) pi

p 0
i

6 p 0 · p = kp 0kkpk cos(#) = cos(#),

where # is the angle between p and p. If p = p 0, then # = 0 and cos(#) = 1; otherwise,
cos(#) < 1.

This, in turn, implies WARP: �x p̄, p̃ 2 S✏ such, p̂ · zi(p̄) 6 0 and p̄ · zi(p̂) 6 0. Then,

p̂i 6 p̄i 6 p̂i.

If zi(p̄) 6= zi(p̂), it follows that p̂ 6= p̄ and we further have that p̂i < p̄i, which implies that
p̂i < p̂i, an obvious contradiction.

Finally, notice that

z1(p) + z2(p) =
P

i[Zi(p) + ↵(p)pi](ei - pip)

=
P

i

⇥
Zi(p)ei - Zi(p)pip+ ↵(p)pie

i - ↵(p)p2
ip
⇤

= Z(p)- p
P

i Zi(p)pi + ↵(p)p- ↵(p)pkpk2

= Z(p),

follows from the fact that z satis�es Walras’s law and p 2 S.
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LN5: Local Uniqueness of Equilibrium

The SMD theorem seems rather worrying from an applied point of view. We now study how
severe the problem really is, by studying the following questions: Under what conditions can
one ensure that an economy has only �nitely many equilibria? And that a small shock to the
economy will a�ect equilibria by just a little? Of course, we must also study how restrictive
those conditions are.

The answers to these questions are well understood, although the mathematical techniques
required by these results are a little more complicated than the ones we have used so far. For
this reason, before a formal discussion we introduce an intuitive argument.

Notice that in all our previous analysis individual endowments have remain �xed (to the
point that we have ignored them, for example, as arguments in the demand functions). The
key of the following analysis is that bad results that appear at a given economy may simply
disappear with a small perturbation of individual endowments.

Graphically, consider an economy with the excess demand function of Fig. 1. In this case,
the predictive power of general equilibrium theory is very limited: there is a whole contin-
uum of equilibria and the set of equilibria need not change smoothly when one perturbs the
economy. Now, at the risk of oversimplifying the problem, just assume that the endowments
do not generate Z but, by just a small perturbation, the aggregate excess demand function is
Ẑ, as in Fig. 2. Then, both problems simply disappear! And notice what a tremendous coin-
cidence is necessary for Z, and not something else like Ẑ, to be the aggregate excess demand
function of the economy one is studying.

Given the oversimpli�cation, the rest of this section presents the formal analysis. For this, �x
I and individual, smooth preferences (ui)i2I. De�ne individual excess demands to take into
account their dependence on individual endowments: zi : RL

++ ⇥ RL
++ ! RL, zi(p,wi) =

xi(p,wi)-wi, so that the aggregate excess demand function writes as

Z : RL
++ ⇥ (RL

++)
I ! RL;Z(p, ~w) =

X

i

zi(p,wi).

As before, thanks to the homogeneity of demand, we can normalize prices with a numéraire,
so that p 2 N1 = {p 2 RL

++ | p1 = 1}, while, by Walras law, we can ignore market clearing
for the numéraire, by considering simply Z̃ : N1 ⇥ (RL

++)
I ! RL-1, de�ned by

Z̃(p, ~w) = (Z2(p, ~w), . . . ,ZL(p, ~w)).

1
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p2/p1

6
Z2(p)

Figure 1: A “critical” excess demand function.

1. F��������� �� E��������

Given an exchange economy, we say that p 2 N1 is a locally unique equilibrium price vector
if:

1. Z̃(p, ~w) = 0, and

2. there exists " > 0 such that Z̃(p 0, ~w) 6= 0 for every p 0 2 [B"(p) \N1] \ {p}.

We also say that an exchange economy is regular if Z̃(p, ~w) = 0 implies that matrix

DpZ̃(p, ~w) =
h
Dp2Z̃(p, ~w) . . . DpL

Z̃(p, ~w)
i

(L-1)⇥(L-1)

has rank L- 1.1

A key mathematical result is the following:

T������ (I������ F������� T������). Let f : D ! R⌘, where D ✓ R⌘ is open, be of class
C1. Let x 2 D be such that Rank[Df(x)] = ⌘. Then,

1. there exist U,V ✓ R⌘, open, such that x 2 U, f(x) 2 V and the restriction of f to U is a
bijection onto V ;

1 Notice that the matrix of the previous de�nition is square, so the requirement is that it be nonsingular.
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p2/p1

6
Ẑ2(p)

Figure 2: A small vertical shift of the excess demand function of Fig. 1.

2. the inverse function of that restriction, g : V ! U, is C1 and for all y 2 V ,

Dg(y) = Df(g(y))-1.

The following is now simple:

T������ 1. If a smooth exchange economy is regular, then it has �nitely many equilibria (and
they all are locally unique).

Proof. Obviously, �niteness implies local uniqueness, although, in the proof, the causality is
argued in the other way.

De�ne ⇣ : RL-1
++ ! RL, by ⇣(p) = Z̃((1,p), ~w). Let (1,p) 2 N1 be such that Z̃((1,p), ~w) = 0.

Then, ⇣(p) = 0 and, by regularity, Rank[D⇣(p)] = L- 1. By the Inverse Function Theorem,
⇣ is injective in a neighborhood of p inRL-1, which implies that (1,p) 2 N1 is locally unique.

Now, suppose that (pn)1n=1 in N1 is a sequence of distinct equilibrium prices. Then, for
each n

1
kpnk

pn 2 S and Z

✓
1

kpnk
pn, ~w

◆
= 0.

By compactness of S, there exists a subsequence (pnm)
1
m=1 such that

pnm

||pnm ||
! p̄ 2 {x 2 RL

+ | ||x|| = 1}.

3



Now, p̄ 2 RL
++ and, by continuity of Z, Z(p̄, ~w) = 0.2 Then,

⇣(
1
p̄1

p̄) = 0 and 1
p̄1

p̄ 2 N1,

which is impossible because pnm ! 1
p̄1
p̄ and 1

p̄1
p̄ is locally unique.

2. S���������

We now show that in regular economies equilibrium prices depend smoothly on endow-
ments. For this, the following is useful:

T������ (I������� F������� T������). Let f : D ! R⌘, where D ✓ R⌘+µ is open, be of
class C1. Let x 2 R⌘ and y 2 Rµ be such that (x,y) 2 D and Rank[Dxf(x,y)] = ⌘. Then,
there exist U ✓ Rµ, open and such that y 2 U, and g : U ! R⌘, of class C1, such that:

1. g(y) = x;

2. for all y 0 2 U, (g(y 0),y 0) 2 D;

3. for all y 0 2 U, f(g(y 0),y 0) = f(x,y); and

4. for all y 0 2 U,
Dg(y 0) = [Dxf(g(y

0),y 0)]-1
Dyf(g(y

0),y 0).

Now, keeping individuals and their (smooth) preferences �xed, de�ne the class of economies
with those preferences, parameterized by individual endowment pro�les in (RL

++)
I.

T������ 2. Let ~w 2 (RL
++)

I give a regular economy, and let p 2 N1 be an equilibrium price
vector for that economy. There existsW, open and such that ~w 2 W, and there exists' : W !
N1, of class C1, such that, for every (ŵ1, . . . , ŵI) 2 W, Z̃('(ŵ1, . . . , ŵI), (ŵ1, . . . , ŵI)) = 0.

Proof. By de�nition, Z̃(p, ~w) = 0 and DpZ̃(p, ~w) has full rank, so the result follows imme-
diately from the Implicit Function Theorem.

Function ' is a smooth, local equilibrium function.
2 If p 2 @RL

++, then ||⇣(p̄nm)|| ! 1, which is impossible because ⇣(p̄nm) = 0 for everym 2 N.
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3. G���������

It is clear that regularity delivers powerful results but it remains to understand how restrictive
an assumption it is. This is where the math gets a bit more complicated.

Let D ✓ R⌘ be open, and suppose that f : D ! Rµ is of class C1. Function f is said to be
transverse to zero, denoted by f t 0, if f(x) = 0 implies that Rank[Df(x)] = µ.

T������ (T�� T������������� T������). Let D1 ✓ R⌘ and D2 ✓ R be open, and let
f : D1 ⇥ D2 ! Rµ be of class Cr, with r > max{⌘ - µ, 0}. For every y 2 D2, de�ne
fy : D1 ! Rµ by fy(x) = f(x,y). If f t 0, then the set {y 2 D2 | ¬(fy t 0)} is negligible.3

The following result shows that almost all economies are regular (and hence have �nitely
many equilibria which, at least locally, depend smoothly on parameters).

T������ 3 (D�����). The subset of pro�les of endowments that generate critical economies is
closed and negligible.

Proof. Let W be such set. By the Transversality Theorem, to show that W is negligible it
su�ces that Z̃ t 0. Suppose that Z̃(p, ~w) = 0. For Rank[DZ̃(p, ~w)] = L - 1, it su�ces to
argue that Rank[Dw1Z̃(p, ~w)] = L - 1. To see that this is the case, �x `⇤ 2 L and consider
the following perturbation to w1:

dw1
` =

8
><

>:

-p`⇤ , if ` = 1;
1, if ` = `⇤;
0, otherwise.

It is left as an exercise to observe that dz`⇤ = 1 and dz` = 0 for every ` > 2, ` 6= `⇤. It
follows, then, that Dw1Z̃(p, ~w) spans e`⇤ . Since `⇤ was arbitrary, DZ̃(p, ~w) spans RL-1.

For closedness, let (~wn)1n=1 in W be such that ~wn ! ~w. Since ~wn 2 W , there exists
pn 2 N1 such that Z̃(pn, ~wn) = 0 but the rank of DpZ̃(pn, ~wn) is less that L - 1. Let
( 1
||pnm ||

pnm)
1
m=1 be a convergent subsequence of ( 1

||pn||
pn)1n=1, and let p̄ 2 RL

+, with ||p̄|| =

1, be its limit. Since (wn)1n=1 is convergent, it is bounded and hence, as before, p̄ 2 RL
++.4

By continuity, Z̃( 1
p̄1
p̄, ~w) = 0 and Rank[DpZ̃(

1
p̄1
p̄, ~w)] < L- 1, so w̄ 2 W.

3 I.e. it has null Lebesgue measure.
4 If p̄ 2 @RL

++, then for m high enough Z̃(pnm , ~wnm) 6= 0.
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LN6: The fundamental theorems of welfare economics

1 The �rst theorem

Pareto e�ciency is a minimal criterion for social optimality. The �rst key normative result in
general equilibrium theory is that, under mild assumptions, equilibrium allocations display
this minimal property.

T������ 1 (T�� FFTWE ��� ���������� ���������). Given a standard production econ-
omy, let (p,~x,~y) be a competitive equilibrium. Allocation (~x,~y) is Pareto e�cient.

Proof. Suppose not: there exists an alternative pro�le of consumption and production plans
((x̂i)i2I, (ŷj)j2J) such that

1. for all j, ŷj 2 Yj;

2.
P

i x̂
i =

P
i w

i +
P

j ŷ
j;

3. for all i, ui(x̂i) > ui(xi); and

4. for some i⇤, ui⇤(x̂i
⇤
) > ui⇤(xi

⇤
).

By 1, p · yj > p · ŷj for all j, whereas, by 3, p · x̂i⇤ > p · xi⇤ . Suppose that for some i,
p · x̂i < p · xi; then, by local nonsatiation, there exists x̃ 2 RL

+ such that

p · x̃ 6 p · xi 6 p ·wi +
P

j s
i,jp · yj

and ui(x̃) > ui(xi), which is impossible. So, it follows that p · x̂i > p · xi for all i.

By 2, then,

p ·
P

i w
i = p ·

�P
i x

i -
P

j y
j
�

=
P

i p · xi -
P

j p · yj

<
P

i p · x̂i -
P

j p · ŷj

= p ·
�P

i x̂
i -

P
j ŷ

j
�

= p ·
P

i w
i,

an obvious impossibility.

1



With a suitable de�nition of the core, we could have argued, actually, that the competitive
equilibrium allocation is not simply e�cient, but lies in the core of the economy. This is
indeed the case for exchange economies:

T������ 2 (T�� FFTWE ��� �������� ���������). Given a standard exchange economy,
let (p,~x) be a competitive equilibrium. Allocation ~x is a core allocation.

C�������� 1. Given a standard exchange economy, let (p,~x) be a competitive equilibrium.
Allocation ~x is Pareto e�cient.

Notice that the theorem (i) does require local nonsatiation; (ii) does not use continuity or
convexity, and assumes existence rather than implying it; (iii) crucially requires the implicit
assumption of competitive equilibrium as we have de�ned it: markets are complete and all
agents, �rms and producers, are price takers.

On the other hand, it is necessary to understand the implication of the theorem. If one ac-
cepts the assumptions of the theorem, it implies that competitive markets deliver allocations
with the minimal social property, as Smith had suggested. But is does not say more than
that! It is clear that Pareto e�ciency does not take into account any distributional consider-
ations and hence many e�cient allocations may be socially objectionable. In that sense, the
theorem should not be understood to imply that economic policy is unnecessary if compet-
itive markets operate. What the theorem does say is that any economic policy beyond the
equilibrium outcome will make at least one individual worse o�; although this result may be
socially desirable, what cannot be expected is “victimless” policies.

2 The second theorem

The ����� tells us that competitive equilibrium allocations are Pareto e�cient. We now
study the opposite problem: given an e�cient allocation, can we ensure that it is an equilib-
rium allocation?

So stated, the answer to the question is obviously negative: there are e�cient allocations that
cannot be sustained as competitive equilibrium. However, if wealth redistribution policies
are allowed, almost all e�cient allocations can be sustained by competitive trading.

T������ 3 (T�� SFTWE ��� E������� E��������). Given an exchange economy, let allo-
cation ~x � 0 be Pareto e�cient. If every ui is continuous, strictly quasiconcave and strictly
monotone, then there exists (p, (ŵi)i2I) such that

P
i ŵ

i =
P

i w
i and (p,~x) is competitive

equilibrium for economy (I, (ui, ŵi)i2I).
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Proof. Let ŵi = xi for all i. Since
P

i ŵ
i =

P
i x̂

i =
P

i w
i 2 RL

++, it follows that there
exists a competitive equilibrium (p, x̃) of (I, (ui, ŵi)i2I). Since, ui(x̃i) > ui(xi) for all i, and
since ~x is e�cient and

P
i x̃

i =
P

i ŵ
i =

P
i x

i =
P

i w
i, it follows that ui(x̃i) = ui(xi)

for all i. This means that xi solves

max
x

�
ui(x) : x 2 B(P, ŵi)

 
,

so (p,~x) is a competitive equilibrium for (I, (ui, ŵi)i2I).

In the case of production economies, the proof is more complicated but it is also very im-
portant as it uses a key result in mathematical economics: the separating hyperplane theo-
rem:

T������ 4 (T�� S��������� H��������� T������). If sets X, Y ✓ RA are disjoint and
convex, then there exist ⇡ 2 RA \ {0} and k 2 R such that: for all x 2 X, ⇡ · x > k; while for
all y 2 Y, ⇡ · y 6 k.

T������ 5 (T�� SFTWE ��� P��������� E��������). Given a standard production econ-
omy, let (~x,~y) be a Pareto e�cient allocation, with xi � 0 for all i. There exists

(p, (mi)i2I) 2 RL
+ ⇥ (R++)

I

such that:

1.
P

i m
i = p · (

P
iw

i +
P

j y
j);

2. for all i, xi solves the problem

max
x2RL

+

�
ui(x) : p · x 6 mi

 
;

3. for all j, yj solves the problem

max
y

�
p · y : y 2 Yj

 
.

Proof. For each i, let Ui = {x | ui(x) > ui(xi)} and de�ne the set U =
P

i U
i.1 De�ne also

the set F = {
P

i w
i}+

P
j Y

j.

We now proceed in a series of steps:
1 Note that we are adding sets! This operation is de�ned as follows: for two sets A and B, we de�ne

A+ B = {x | x = a+ b, for some a 2 A and some b 2 B}.

3



1. By quasiconcavity of each function ui, each set Ui is convex, and so it follows that U
is convex.

2. By convexity of each technology Yj, we also have that set F is convex.

3. Since (~x,~y) is e�cient, it follows that U and F are disjoint.

4. By the separating hyperplane theorem, there is a vector p 2 RL, p 6= 0, and some
constant k such that p · x > k for all x 2 U, and p · y 6 k for all y 2 F.

5. By free-disposal of each technology Yj, we have that p > 0.

6. For each consumer i, suppose that x̂i is such that ui(x̂i) > ui(xi). By local non-
satiation, we can �nd, for any natural number n, some bundle xi(n) 2 Ui such that
kxi(n) - x̂ik < 1/n. It follows from step 4, then, that p ·

P
i x

i(n) > k for every n.
Letting n ! 1, we conclude that p ·

P
i x̂

i > k.

7. In particular, the latter step implies that p ·
P

i x
i > k and therefore, by monotonicity

and continuity of each ui, that p � 0.

8. As a consequence, we also have that ui(x) > ui(xi) implies p · x > p · xi, for all
individuals.

9. Since
P

i x
i 2 F, we have that, moreover,

p ·
P

i x
i = p ·

�P
i w

i +
P

j y
j
�
6 k,

so p ·
P

i x
i = k.

As a consequence of the last result, y 2 Yj implies that p · y 6 p · ŷj, since

P
i w

i + y+
P

j 0 6=j y
j 0 2 F,

which implies that
p ·

�P
i w

i + y+
P

j 0 6=j ŷ
j 0
�
6 k.

This proves the third claim in the theorem.

To conclude the proof, de�ne mi = p · xi for each consumer. The �rst implication of the
theorem follows by construction, while the third part was argued above. Now, suppose that
for some individual i we have that for some bundle x, ui(x) > ui(xi) and p · x 6 mi are
both true. By our previous result, p · x = mi > 0, and, hence, by continuity of preferences,
for ✏ 2 (0, 1) close enough to 1 we have ui(✏x) > ui(xi) and p · (✏x) < mi = p · xi, which
contradicts our previous results. This proves the second part of the theorem.
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Notice that, unlike the �����, the second fundamental theorem does imply existence of
equilibrium, so the continuity and convexity assumptions are crucial. The policy implication
is that policy-makers do not have to close competitive markets to attain their social goals,
as long as these goals are Pareto e�cient. Quite the opposite: well chosen redistribution
policies and competitive markets, under the assumptions of the theorem, deliver the desired
objectives. Notice too, though, that the problem of how much information a policy-maker
needs, in order to �gure out the correct redistribution, is not addressed by the theorem.
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LN6: Falsifying Competitive Equilibrium

The standard for what is to be considered scienti�c knowledge has been a prominent topic
of debate in epistemology. One of the most in�uential philosophers of the last century, Karl
Popper,1 argued that scientists should actively try to prove their theories wrong, rather than
merely try to verify them through inductive reasoning. The Popperian postulate sustains
that scienti�c discovery ought to follow four steps: (i) the internal consistency of a theory
must be formally checked, to verify that it contains no logical inconsistencies; (ii) the logical
principles of the theory must be distinguished from its empirical implications; (iii) the theory
must be compared with alternative existing theoretical knowledge that has not been refuted
by empirical evidence, in order to ascertain whether it can explain phenomena that cannot
be explained by the existing knowledge; (iv) �nally, the theory must be submitted to tests
of its empirical implications, in order for it to be corroborated (but not veri�ed) or refuted.
Interesting tests are those that are “harsh,” in the sense that, a priori, the theory would appear
likely to fail them. And if a theory fails a test, and there exists no reasonable excuse that can
itself be tested, then the theory should be abandoned.

Falisi�cationism was brought to economics by P. Samuelson [2].2 For him, “meaningful the-
orems” are hypotheses “about empirical data which could conceivably be refuted,” and he
proposed that the discipline should get rid of any theories that failed this criterion. For indi-
vidual decision problems, Samuelson’s idea gave the impetus for the development of revealed
preference theory. For the competitive equilibrium model, on the other hand, the program
was rather problematic: the SMD theorem was understood to have quite negative implica-
tions for the existence of testable restrictions of competitive equilibrium. Our textbook, for
instance, categorizes these results as saying that “anything satisfying” the very mild restric-
tions of the Sonnenschein-Mantel-Debreu theorem “can actually occur.” Recent research,
however, has obtained more positive results regarding the empirical implications of general
equilibrium theory.

D. Brown and R. Matzkin [1], searched for testable restrictions on the equilibrium manifold,
i.e., the set of pro�les of individual endowments and associated equilibrium prices. Given the
logic of comparative statics, the equilibrium manifold is the appropriate construct to use to

1 Born in Vienna on 28 July 1902, died on 17 September 1994. His contributions encompassed not only
philosophy of science, but also mathematical logic and physics.

2 Gary, Indiana, May 15, 1915 — Massachussets, December 13, 2009. Samuelson received the Nobel prize in
1970, two years before Arrow.
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study the testable restrictions of general equilibrium: the system’s exogenous variables (the
individual endowments) are allowed to vary to derive restrictions on the system’s endoge-
nous variables (the equilibrium prices).

As a result of this innovation [1] describe the complete set of testable propositions of the pure
exchange model on �nite observations of the equilibriummanifold and prove that these tests
are nonvacuous. For the case of two agents and two observations, they derive the tests in
the form of a �nite set of polynomial inequalities over the data alone.

To begin, suppose that there are observations on prices and quantities demanded by one
consumer, (pt, xt)Tt=1. Say that a utility function u(x) rationalizes the data if u(xt) > u(x)

for all x such that pt · xt > pt · x.

It is a classical result in consumer theory, due to S. Afriat, that given a data set (pt, xt)Tt=1,
the following conditions are equivalent:3

1. There exist numbers Vt, �i
t > 0, t = 1, . . . , T that satisfy the “Afriat inequalities”: for

t, s = 1, . . . , T ,
Vt 6 Vs + �sps · (xt - xs).

2. There exists a concave, monotonic, continuous utility function that rationalizes the
data.

Importantly, the polynomial form of the restrictions results entirely from the assumption of
�niteness of data, not from any assumptions on the functional form of utility. This is impor-
tant: the basic building blocks of general equilibrium models have the feature that testable
restrictions will be polynomial in form. The �nite polynomial form of these conditions is
important because it means semi-algebraic theory can be applied to describe the data that
satisfy the restrictions.

T������ 1 (B���� ��� M������). Let (pt, (wi
t)i2I)Tt=1 be given. There exists a pro�le of

continuous, monotone and concave utility functions (ui)i2I such that each pt is an equilibrium
price vector for the exchange economy {I, (ui,wi

t)i2I} if, and only if, the following is satis�ed:
There exist numbers Vi

t and �i
t, and vectors xit such that:

(i) markets clear:
P

i x
i
t =

P
i w

i
t, for t = 1, . . . , T ;

(ii) budget constraints are satis�ed: pt · xit = pt ·wi
t, for t = 1, . . . , T , and i = 1, . . . , I;

(iii) xit > 0, �i
t > 0, for t = 1, . . . , T and i = 1, . . . , I;

3 A more complete statement of this theorem and its proof are deferred to the appendix: see Theorem 3.
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(iv) the Afriat inequalities are satis�ed for all agents: for t, s = 1, . . . , T and i = 1, . . . , I,

Vi
t - Vi

s - �i
sps · (xit - xis) 6 0.

Theorem 1 describes competitive equilibrium behavior in terms of a �nite set of polynomial
inequalities mediated by quanti�ers. Now, for any given model and any given set of ob-
servables, either the set de�ned by the testable restrictions would contain all potential data,
meaning the model was irrefutable for that set of observables, or it would be empty, meaning
equilibrium could never be obtained, or it would contain a strict subset of all potential data.
In the last case we say the model is testable, or non-vacuous, given the potential data set,
and one could (theoretically) derive the testable restrictions on observable variables.

T������ 2 (B���� ��� M������). The pure exchange model of competitive equilibrium is
falsi�able on T observations of prices and individual endowments (pt, (wi

t)i2I)Tt=1.

The proof of this theorem depends on the counterexample given by [1], showing that there
exist data that do not satisfy the conditions of Theorem 1, as shown in the �gures below.
Suppose that one has observed the two Edgeworth boxes and prices of Fig. 1.
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Figure 1: Two observations.

The question that has to be answered is: do there exist individual preferences such that the
each observed price is competitive equilibrium for the corresponding box and the (invari-
ant) preferences? Notice that, since we are not observing individual consumptions, it may in
principle seem like revealed-preference is silent about this question. But it is not: since con-
sumption cannot be negative, we can restrict the values that individual consumption bundles
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may take, even if we cannot exactly pin down their values. To do this, just superimpose the
two boxes, as in Fig. 2. Whatever their exact values are, with nonnegative consumptions
for individual 2, individual 1 must violate WARP! These data are then inconsistent with the
general equilibrium model, and hence the model is refutable.
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Figure 2: Impossibility of WARP for individual 1.

A�������

A1: Some math

Twomathematical results that are going to be used later are presented next. These results are to apply
to �nite-dimensional real spaces only.

Systems of inequalities

The following result is usually referred to as the Theorem of the Alternative.

T������. Let at 2 RL and ↵t 2 R, for t = 1, . . . , T , and let S be an integer, 1 6 S 6 T . Suppose that
there exists a vector x 2 RL such that at · x 6 ↵t for all t = S+ 1, . . . , T . Then, one and only one of the
following statements is true:

(i) There exists a vector x 2 Rl such that

at · x < ↵t for all t = 1, . . . ,S,
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and
at · x 6 ↵t for all t = S+ 1, . . . , T .

(ii) There exists a vector y 2 RT
+ such that yt 6= 0 for some t 6 S, and

TX

t=1
ytat = 0 and

TX

t=1
yt↵t 6 0.

Quanti�er elimination

The statements of the theorems we’ve introduced contain existential quanti�ers on unobserved (and
even unobservable) variables of their models. Although modern computational algorithms have
proven useful to deal with this kind of situation, from a purely theoretical perspective, like the one
followed here, it is convenient to argue that these quanti�ers can be eliminated, and to obtain as much
information as possible regarding equivalent statements that are free of quanti�ers. For this, we can
use the classical theory of quanti�er elimination introduced next.

A function µ : RK ! R is a (real) multivariate monomial if there exists natural numbers (or zero) ↵k

such that µ(x) =
QK

k=1 x
↵k
k . A function ⇢ : RK ! R is a (real) multivariate polynomial if there exist

�nitely many multivariate monomials, µm : RK ! R, and real numbers, am 6= 0, m = 1, . . . ,M,
such that ⇢ =

Pm
m=1 amµm.

De�ne the sign function, sgn : R ! {-1, 0, 1}, by

sgn(x) =

8
><

>:

-1, if x < 0;
0, if x = 0;
1, if x > 0.

A set A ✓ RK is semialgebraic if it can be written as a set-theoretic expression of the form

A =
M[

m=1

Nm\

n=1

�
x 2 RK | sgn(⇢m,n(x)) = sm,n

 
,

where, for each m = 1, . . . ,M and each n = 1, . . . ,Nm, function ⇢m,n : RK ! R is a multivariate
polynomial and sn,m 2 {-1, 0, 1}. A function ⌘ : A ! B, where A ✓ RKA and B ✓ RKB are
semialgebraic sets is a semialgebraic map if its graph is semialgebraic.

T������ (T����� ��� S���������). Let A ✓ RK be a semialgebraic set and let ⌘ : RK toRK 0 be a
semialgebraic map. Then, the image of A under ⌘,

⌘[A] = {y 2 RK 0
|9x 2 A : ⌘(x) = y},

is semialgebraic.

This theorem gives us the following corollary, which we will later use.

C�������� 1. Let A ✓ RK1 ⇥ RK2 be a semialgebraic set and let
�!
A 1 be its projection into RK1 . Then,

�!
A 1 is semialgebraic.
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A2: Revealed preference analysis

Suppose that one has observed a data set D = {(xt,pt,mt)}Tt=1, where T is �nite: for each observa-
tion, t = 1, . . . , T , prices are pt 2 RL

++, and individual’s nominal income ismt > 0, and her demand
for commodities is xt 2 B(pt,mt) with pt · xt = mt. We say that the utility function u : RL

+ ! R
rationalizes the data if xt is the unique solution to

max
x

{u(x) : pt · x 6 mt}

for each observation t. We want to distinguish data sets that are rationalizable by some “standard”
individual preferences from those that cannot be explained by the individually-rational behavior of a
consumer who takes prices as given.

We will say that a data setD satis�es the Strong Axiom of Revealed Preferences, SARP, if for every �nite
sequence of observations, ((xk,pk,mk))Kk=1 in D one has that the implication

⇣
8k 2 {1, . . . ,K- 1},pk · xk+1 6 mk and x1 6= xK

⌘
) pK · x1 > mK

is true.

The following theorem says that SARP is a test of rational behavior, and that there can be no test of
such behavior that is stronger than SARP.

T������ 3 (A�����). Let D be a �nite data set. The following statements are equivalent:

1. There is a utility function that rationalizes D.

2. D satis�es SARP.

3. There exist numbers �t > 0 and µt, for each observation t 2 {1, ..., T }, such that

µt 6 µt 0 + �t 0pt 0 · (xt - xt 0)

for each pair of observations t and t 0, with strict inequality whenever xt 6= xt 0 .

4. There is a continuous, strictly concave, strictly monotone utility function that rationalizes D.

Proof. It su�ces if we show that 1 ) 2 ) 3 ) 4 ) 1.

To see that 1 implies 2, suppose, by way of contradiction, that one can �nd a �nite sequence

((xk,pk,mk))Kk=1

in D such that:

(i) pk · xk+1 6 mk for all k = 1, ...,K- 1;
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(ii) x1 6= xK; and

(iii) pK · x1 6 mK.

Given that u rationalizes D, it follows from (i) that u(xk+1) 6 u(xk) for each k in {1, ...,K - 1}, so
u(xK) 6 u(x1). By (iii) it then follows that x1 solves the problem

max
x

�
u(x) : pK · x 6 mK

 
,

which is impossible by (ii), since

argmaxx
�
u(x) : pK · x 6 mK

 
= {xK}.

To see that 2 implies 3, we can give a simple proof under the extra assumption that xt 6= xt 0 whenever
t 6= t 0, while the formal argument for the general case is deferred. Under this simplifying assumption,
we want to �nd numbers µt and �t, for t = 1, . . . , T , such that

µt - µt 0 - �t 0pt 0 · (xt - xt 0) < 0

for all t and all t 0 6= t, while �t > 0 for all t. Now, by the Theorem of the Alternative, if these numbers
do not exist, then we can �nd nonnegative numbers ↵t,t 0 and �t, at least one of which is not zero,
such that, for all t, X

t 0 6=t

↵t,t 0 =
X

t 0 6=t

↵t 0,t (⇤)

and
-
X

t 0 6=t

↵t,t 0pt · (xt 0 - xt) = �t. (⇤⇤)

It is immediate that if all ↵t,t 0 numbers are zero, then so must all �t numbers, which is impossible. It
follows that there must be some t1 and some t 0 6= t1 such that ↵t1,t 0 > 0. Using Eq. (⇤⇤), there must
then exist some t2 6= t1 such that

↵t1,t2 6= 0 and p1 · (xt2 - xt1) 6 0.

By Eq. (⇤), it follows that there must be some t 0 such that ↵t2,t 0 > 0, and then, by Eq. (⇤⇤), that there
must then exist some t3 6= t2 such that

↵t2,t3 6= 0 and p2 · (xt3 - xt2) 6 0.

If t3 = t1, we have a violation of SARP. Otherwise, we can continue to construct a sequence (t1, t2, t3, . . .)
such that

↵tk,tk+1 6= 0 and ptk · (xtk+1 - xtk) 6 0.

Since the dataset is �nite, this construction must lead to some cycle, and hence to a violation of SARP.
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Again, we can give a simple argument that 3 implies 4, if we defer the proof that the rationalizing
function is strictly concave, and merely require that each xt be a solution of the problem

max
x

{u(x) : pt · x 6 pt · xt} ,

even though there may be other solutions; again, the full proof is deferred to the Appendix. For each
observation t, de�ne function �t : RL ! R by

�t(x) = µt + �tpt · (x- xt),

which is concave and strictly monotone. With these functions, we can construct the utility function
u by letting

u(x) = min
t2{1,...,T}

{�t(x)} ,

which is continuous, concave and strictly monotone. By construction, u(xt) = µt for each observa-
tion t. Now, let x 6= xt be such that pt · x 6 mt. Then,

u(x) 6 �t(x) = µt + �tpt · (x- xt) 6 µt.

Now, for strong concavity, de�ne function h : RL ! R by h(x) =
p
||x||2 + 1 - 1; this function is

smooth, strictly convex and satis�es that: (i) h(x) = 0 for, and only for, x = 0; (ii) if x 6= 0, then
h(x) > 0; and (iii) for each component ` = 1, . . . ,L, 0 6 @h/@x`(x) < 1 at all x. Since there are only
�nitely many observations, there exists a strictly positive " such that

µt 0 < µt + �tpt · (xt 0 - xt)- "h(xt 0 - xt)

whenever xt 0 6= xt, while µt 0 = µt whenever xt 0 = xt. Now, for each observation t, de�ne function
�t : RL ! R by

�t(x) = µt + �tpt · (x- xt)- "h(x- xt),

which is strictly concave. Also, note that

@�t

@x`
(x) = �tpt,` - "

@h

@x`
(x- xt) > �tpt,` - ",

for each component `, so we can take " small enough to ensure that all �t functions are strictly
monotone. With these functions, we can construct the utility function u by letting

u(x) = min
t2{1,...,T}

{�t(x)},

which is continuous, strictly concave and strictly monotone. By construction, u(xt) = µt for each
observation t. Now, let x 6= xt be such that pt · x 6 mt. Then,

u(x) 6 �t(x) = µt + �tpt · (x- xt)- "h(x- xt) < µt.

That 4 implies 1 is obvious.
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To conclude, let us see an alternative, constructive proof that statement 2 implies statement 3 in
Theorem 3.

Proof. Fix " > 0. De�ne the “directly revealed preference” binary relation %D on {xt}
T
t=1 by saying

that xt %D xt 0 if (and only if) pt · xt 0 6 mt, and the “revealed preference” relation %I on the same
domain, by saying that xt %I xt 0 if there is a �nite sequence (xk)Kk=1 such that

xt %D x1 %D x2 %D . . . %D xK %D xt 0 .

It is immediate that %I es re�exive and transitive.

Now, given I ✓ {1, ..., T }, de�ne

max(I) = {t 2 I | (t 0 2 I and xt 0 %I xt) ) xt %I xt 0}.

Note that if I 6= ? then max(I) 6= ?.4

Now, consider the following algorithm, which runs in �nite time: Given D,

1. Let I = {1, ..., T } and B = ?.

2. Takem 2 max(I).

3. De�ne E = {t 2 I | xt %I xm}.

4. If B = ?, let µm = �m = 1 and go to 6.

5. Let
µm = min

t2E

�
min
t 02B

{min {µt 0 + �t 0pt 0 · (xt - xt 0)- ",µt 0 - "}}

�

and
�m = max

t2E

�
max
t 02B

�
max

�
µt 0 - µm + "

pt · (xt 0 - xt)
, 1
���

6. For all t 2 E, let µt = µm and �t = �m.

7. Let I = I \ E and B = B [ E. If I 6= ?, go to 2. (If I = ?, stop.)

4 To see this, denumerate I = {t1, . . . , t#I}, and consider the following construction: let m = t1 and bt0 =

xt1 , and for each i 2 {1, . . . , #I}, proceed consecutively as follows:

(1) if xti %I bti-1 , then de�ne bti = xti andm = ti;

(2) otherwise, if it is not true that xti %I bti-1 , then let bti = bti-1 and and m = ti-1.

We want to show that, at the end of this construction, m = max(I). Notice �rst that, by re�exivity and
transitivity of %I, bt#I %I bti for all i in {1, . . . , #I}. Note also that xm = bt#I , by construction. Now, suppose
that for some ti 2 I, xti %I xm. Then, xti %I bt#I , and, given that bt#I %I bti-1 , by transitivity xti %I bti-1 ,
which implies that bti = xti and bt#I %I bti = xti . It follows that xm = bt#I %I bti = xti and, hence, that
m 2 max(I).
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We want to show that the output of the algorithm, {(�t,µt)}Tt=1 satis�es the conditions of statement
3. The fact that each �t > 0 follows by construction. Now, to obtain the inequality in the statement,
it su�ces to show that after each pass of the algorithm by step 6, the values of µ and � computed so
far satisfy the inequality. We consider four cases, and take " > 0 to be small enough:

Case 1: t 2 B and t 0 2 E. Note that by step 5 of the algorithm, for each t 2 B and each t 0 2 E one
must have that pt 0 · (xt - xt 0) > 0, for otherwise pt 0 · xt 6 pt 0 · xt 0 = mt 0 , which would imply
that xt 0 %D xt and, hence, that xt 0 %I xt; this would in turn imply that in a previous pass of the
algorithm, when t entered E, t 0 should have entered too, which contradicts the premise that now
t 2 B and t 0 2 E. Now, then, with t 2 B and t 0 2 E we have that

�t 0 = �m > max
t 002B

�
max

�
µt 00 - µm + "

pt 0 · (xt 00 - xt 0)
, 1
��

> µt - µm + "

pt 0 · (xt - xt 0)

from where �t 0pt 0 · (xt-xt 0) > µt-µm+ " and then, by step 6, µt = µm which implies the result.

Case 2: t 2 B and t 0 2 E. By construction,

µt 0 = µm 6 min
t 002B

{min {µt 00 + �t 00pt 00 · (xt 0 - xt 00)- ",µt 00 - "}} 6 µt + �tpt · (xt 0 - xt)- ".

Case 3: t, t 0 2 E such that xt 6= xt 0 . By de�nition, xt %I xm %I xt 0 , which implies by SARP that
pt 0 · xt > mt 0 and, hence, that pt 0 · (xt - xt 0) > 0. Since µt = µt 0 , it is immediate that

µt 0 < µt + �tpt · (xt 0 - xt)

and then, for small enough ",

µt 0 6 µt + �tpt · (xt 0 - xt)- ".

Case 4: t, t 0 2 E such that xt = xt 0 . This case is immediate, by construction.
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LN8: Core Convergence

Recall that every competitive equilibrium allocation is in the core, but there may be core
allocations that are not equilibria. Now, it is intuitive to think that the presence of more
agents in the economy “shrinks” its core, since there are more coalitions that can object a
given allocation.1

Debreu and Herbert Scarf2 studied this problem: (i) is it true that this reduction takes place?
and (ii) if we push the number of agents to in�nity, will non-equilibrium allocations remain
in the core? The respective answers are Yes and No, which is why we normally think that
competitivemarkets workwell in economies withmany agents: when there aremany agents,
their cooperative behavior can be decentralized via competitive markets.

1. I������� A�������

To see the intuition of this idea, consider and Edgeworth box economy of Fig. 1. Point a rep-
resents a core allocation which is not equilibrium. Notice, however, that both agents would
prefer a situation in which 1 consumes in c and 2 in b. Could they agree on implementing
that situation? No, since there would be excess demand for commodity 1 and excess supply
commodity 2.

Now, if you bring to this economy an agent who is willing to supply commodity 1 in exchange
for commodity 2, the latter change may be possible. For this, simply note that a replica of
consumer 1 o�ered to consume in c does exactly that: he brings the required amount of
commodity 1 and consumes the excess of commodity 2. With these carefully chosen trades,
allocation (c, c,b)would be feasible for a coalition {1, replica of 1, 2} of a larger economy, and
it would be more desirable for its members than (a,a,a). In an informal sense, the presence
of the replica of 1 eliminates allocation a from the core.

1 We are using the term “shrink” loosely, since the presence of more agents changes the dimension of the
allocation space, so comparing the sizes of the cores will require some re�nement of the argument.

2 July 25, 1930 – November 15, 2015.
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Figure 1: Core shrinkage upon replication of an economy

2. F����� A�������

Fix a standard exchange economy, E. For each natural numberN, letEN be theN-fold replica
of E:3

E
N = {I⇥ {1, . . . ,N}, (ui,n,wi,n)(i,n)2I⇥{1,...,N}},

where for all (i,n), (ui,n,wi,n) = (ui,wi).

T������ 1. If (p, (xi)i2I) is a competitive equilibrium for E, then

(p, (xi,n)(i,n)2I⇥{1,...,N}),

with xi,n = xi for every (i,n), is an equilibrium for EN.

Proof. This is left as an exercise.

Given E
N, a feasible allocation (xi,n)(i,n)2I⇥{1,...,N} is said to have the equal-treatment prop-

erty if xi,n = xi,n
0 for all i and all n,n 0.

T������ 2. Suppose that each ui is strictly quasiconcave, and that (p, x) is a competitive
equilibrium for EN. Then, x has the equal-treatment property.

3 Enlarging the economy using replicæ will take care of the dimensionality issue mentioned before.
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Proof. Suppose not: let î, n̂, ñ be such that xî,n̂ 6= xî,ñ. Let (x̂i,n)(i,n)2I⇥{1,...,N} be de�ned as
follows:

x̂i,n =

�
1
2(x

î,n̂ + xî,ñ), if (i,n) 2 {(î, n̂), (î, ñ)};
xi,n, otherwise;

which is feasible. Since (p, x) is a competitive equilibrium, ui(xî,n̂) = ui(xî,ñ) and, so, by
strong quasiconcavity, ui(x̂î,n̂) > ui(xî,n̂) and ui(x̂î,ñ) > ui(xî,ñ). By construction, for all
(i,n) 2 I⇥ {1, . . . ,N}, ui(x̂i,n) > ui(xi,n). This contradicts the �����.

These last two theorems de�ne a one-to-one correspondence between equilibria of E and
equilibria of EN.

T������ 3. Suppose that each ui is strongly quasiconcave. If x is a core allocation for EN, then
it has the equal-treatment property.

Proof. Suppose not: let î, n̂ and ñ be such that xî,n̂ 6= xî,ñ. For each i 2 I, let

ni 2 argminn2{1,...,N}
{ui(x1,n)}.

ConstructH = {(i,ni)}i2I and

(x̂(i,n
i))i2I =

 
1
N

X

n

xi,n

!

i2I

.

By construction,H ✓ I⇥ {1, . . . ,N}, H 6= ?, whereas

X

h2H

x̂h =
1
N

X

i,n

xi,n =
1
N

X

i,n

wi,n =
X

i

wi =
X

h2H

wh.

By strict quasiconcavity, uh(x̂h) > uh(xh) for every h 2 H , whereas uî(x̂î,n
î
) > uî(xî,n

î
),

which is impossible.

Denote by W the set of all equilibrium allocations for E and let CN be the “dimension-free”
core of EN:

CN = {(xi)i2I 2 (RL
+)

I
| (xi,n = xi)(i,n)2I⇥{1,...,N} is in the core of EN

}.

T������ 4 (T��D������S���� T������). Suppose that eachui is monotone and and strictly
quasiconcave, and wi 2 RL

++ for all i. Then,

1\

N=1

CN = W.

3



Proof. That W ✓ \1
N=1C

N is left as an exercise.

For the opposite inclusion, let x 2 \1
N=1C

N and let P be the convex hull of
[

i

�
z 2 RL

| ui(wi + z) > ui(xi)
 
.

By monotonicity, P is non-empty.

Our �rst claim is that 0 /2 P. To see why, suppose otherwise: let ↵ 2 RI
+ be such that

P
i ↵

izi = 0 for (zi)i2I such that ui(wi + zi) > ui(xi) for all i 2 J. Then, for eachm 2 N,
let

ai
m = min

�
n 2 N | n > m↵i

 
;

also, let H1 = {i 2 I | ↵i > 0} 6= ? and de�ne, for all i 2 H
1,

zim =
m↵i

ai
m

zi.

By construction, for all i 2 H
1,

wi + zim 2
Y

`

(wi
`,w

i
` + zi`]

and limm!1(wi + zim) = wi + zi. The latter implies that there exists M 2 N such that for
all i 2 H

1, ui(wi + ziM) > ui(xi).

Now, constructH ✓ I⇥{1, . . . ,M} by picking, for each i 2 I
1, ai

M replicas of i and allocating
to each one of these replicas x̂h = wi + ziM. It is immediate that for all h 2 H, uh(x̂h) >

uh(xh), and

X

h2H

x̂h =
X

i2H1

ai
M

✓
wi +

M↵i

ai
M

zi
◆

=
X

h2H

wh +
X

i

↵izi = 0,

which contradicts the fact that (xi,n = xi)(i,n)2I⇥{1,...,M} is in the core of EM.

Since x is in the core of the original economy,C1, we know that
P

i x
i =

P
iw

i. Since 0 /2 P

and P is convex, by the separating hyperplane theorem there exists p 2 RL
\ {0} such that

for all z 2 P, p · z > 0. By monotonicity of all preferences, p 2 RL
++ and it is immediate that

for all i 2 I, if ui(x̂) > ui(xi), then p · x̂ > p ·wi. Moreover, as in the proof of the �����, by
continuity, for all i, if ui(x̂) > ui(xi), then p · x̂ > p ·wi, and, in particular, p · xi > p ·wi.

Now, since
P

i x
i =

P
iw

i, it follows that for every i, p ·xi = p ·wi, and if ui(x̂) > ui(xi),
then p · x̂ > p ·wi.

Again as in the proof of the �����, since each wi 2 RL
++, if ui(x̂) > ui(xi), then p · x̂ >

p ·wi. It follows that (p, x) is a competitive equilibrium for economy E.
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University of California, Davis
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LN11: Public Goods and Lindahl Equilibrium

A particular instance of externalities occurs when a commodity that is non-rival and non-
exclusive. Such commodities are known as public goods, and their treatment as if they were
“private” commodities leads again to Pareto ine�cient equilibrium allocations.

Suppose that there exist L+ 1 commodities. Individual preferences are represented by func-
tions of the form ui : RL+1

+ ! R. Denoting by x a bundle of the �rst L commodities, and by y
the consumption of the last commodity, we write the utility of individual i as ui(x,y). What
makes the last commodity special is that if there is a pro�le ~y = (y1, . . . ,yI) of individual
demands for it, then each person’s consumption equals

P
i y

i.

Suppose also that the �rst L commodities are available in private endowments, wi 2 RL
+,

while the last one has to be produced: there exist a �rm that produces Y = f(X) units of that
commodity if it uses a bundle X of the other commodities as input. Individual i is assumed
to own a share si of the �rm’s equity.

Al functions ui are assumed to be of class C2, di�erentiably strictly monotone, and di�er-
entiably strictly quasi-concave. Technology f : RL

+ ! R+ is assumed to be of class C2,
di�erentiably monotone and di�erentiably concave.

1. C���������� E���������

Denoting by p the vector of prices of the �rst L commodities and by q the price of the last
commodity, individual i’s budget constraint is given by

p · xi + qyi 6 p ·wi + si(qY - p · X),

where xi and yi are, respectively, her private demands for the �rst L goods and the last good.
Since the last good is public, her utility level is ui(xi,

P
j y

j) though. In the language of the
previous note, the last commodity imposes an externality.

Again, the de�nition of competitive equilibrium requires an assumption on how each indi-
vidual sees the determination of the others’ demands for the public good.

D��������� 1. A competitive, or Nash-Walras, equilibrium is an array (p,q,~x,~y,X, Y), where
~x = (x1, . . . , xI) and ~y = (y1, . . . ,yI) are, respectively, pro�les of consumption bundles of the
�rst L goods and of the last good, such that:

1



i. for each i, (xi,yi) solves the problem

max
x,y

�
ui

�
x,y+

P
j 6=i y

j
�
: p · x+ qy 6 p ·wi + si(qY - p · X)

 
;

ii. for the �rm, (X, Y) solves the problem

max
X̂,Ŷ

⌦
qŶ - p · X̂ : Ŷ = f(x̂)

↵
;

iii. markets clear:
P

i x
i + X =

P
i w

i and
P

i y
i = Y.

The �rst-order conditions for competitive equilibrium require that for some~� � 0,

Dxu
i(xi, Y) = �ip and @yu

i(xi, Y) = �iq, (1)

for all i, while
qDF(X) = p (2)

for the �rm.

Since Dxu
i � 0 and @yu

i > 0 for all i, Eqs. (1) and (2) imply that p � 0, q > 0 and �i > 0
for all i.

2. I����������� �� C���������� E��������� A����������

De�ne an allocation to be (~x,y,X, Y), and say that it is feasible if
P

i x
i + X 6 P

iw
i and

y 6 Y = f(X).

As in the case of externalities, e�ciency of allocation (~x,y,X, Y) requires that for some ~µ =

(1,µ2, . . . ,µI) � 0, some ⌫ > 0 and some � � 0,

µiDxu
i(xi, Y) = � (3)

for all i, while X

i

µi@yu
i(xi, Y) = ⌫ and � = ⌫Df(X). (4)

Suppose that the competitive equilibrium allocation is Pareto e�cient. From Eqs. (1) and (3),
µi�ip = � � 0. Using (1) again,

�i =
1
q
@yu

i(xi, Y),

so that
µip

q
@yu

i(xi, Y) = �. (5)
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Adding Eq. (5) across individuals,
⇥P

i µ
i@yu

i(xi, Y)
⇤
p = Iq�.

From Eq. (4), the latter means that ⌫p = Iq�, while, from Eqs. (2) and (4),

⌫p = ⌫qDf(X) = q�.

Since q 6= 0 and � 6= 0, the equality Iq� = q� requires that I = 1. Except on the trivial case
of a one-individual economy, the equilibrium allocation is thus ine�cient.

3. L������’� S�������

Suppose that I > 2 and “someone” recognizes the ine�ciency of the equilibrium allocation
and proposes an alternative institutional arrangement:

1. each individual recognizes that the amount of public good available to her is the total
supplied by the �rm;

2. over that total quantity, each individual pays a personalized price, to contribute to its
funding; and

3. the total collected from those personalized prices is paid to the �rm.

Under this arrangement, the concept of equilibrium is di�erent. Let us denote by qi the price
paid, per unit of the total amount of public good available to the society, by individual i.
Denote by y such total amount.

D��������� 2. A Lindahl equilibrium is an array (p,~q,~x,y,X, Y), where ~x = (x1, . . . , xI),
~q = (q1, . . . ,qI) and y 2 R+, such that

i. for each i, (xi,y) solves the problem

max
x̂,ŷ

�
ui(x̂, ŷ) : p · x̂+ qiŷ 6 p ·wi + si[qY - p · X]

 

where q =
P

i q
i;

ii. for the �rm, (X, Y) solves the problem

max
X̂,Ŷ

⌦P
i q

iŶ - p · X̂ : Ŷ = f(X̂)
↵
;

iii. markets clear:
P

i x
i + X =

P
i w

i and y = Y.
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The importance of this concept is that it is an extension of the de�nition of competitive
equilibrium that retains all its properties. The ����� and �����, for instance, apply with no
modi�cation. If the institutional arrangement that underlies this concept of equilibrium cor-
responds to real life, then the equilibrium allocation is Pareto e�cient, assuming, of course,
that all other premises of the de�nition apply.

4. A (V��� B����) I����������� �� I�������������

The concept of Lindahl equilibrium is theoretically useful but the institutional arrangement
it assumes is likely untenable. Game theory has studied the problem of how to design an in-
stitutional setting (mechanism) such that the individually rational interaction in that setting
induces socially desirable outcomes.

For the case at hand, a mechanism (or game form) consists of a set of individual message (or
strategy) spaces and an outcome function that determines an allocation of commodities as a
function of themessages. If the message space of individual i isMi, one denotesM = ⇥iM

i,
so that ~m 2 M represents a pro�le of strategies. The mechanism de�nes an allocation
function (x1(~m, . . . , xI(~m),y(~m),X(~m), Y(~m)). The mechanism is feasible if its allocation
function gives a feasible allocation for each pro�le of messages.

Note that, given the economy, the mechanism de�nes a game with individual strategy spaces
Mi and payo� functions vi(~m) = vi(mi,m¬i) = ui(xi(~m),y(~m)). For this game, a Nash
equilibrium is a pro�le of strategies ~m such that each i solves

max
m

�
vi(m,m¬i) : m 2 Mi

 
.

The mechanism implements (in Nash equilibrium) the set of allocations given by the alloca-
tion function at the Nash equilibria of the game.

5. I����������� ��� S�� �� L������ E��������� A����������

For the sake of simplicity, let us assume that:

1. there is only one private good, so L = 1;

2. there are only three individuals, so I = 3;

3. the technology to produce the public good satis�es constant returns to scale, so the
production function is f(X) = 'X, for some number ' > 0.
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Also, for the sake of simplicity, we will ignore all non-negative constraints in what fol-
lows.

Under these assumptions, consider the following mechanism. For each consumer, the mes-
sage space isMi = R and the allocation function is constructed as follows:

1. the supply of public good is Y(~m) = m1 +m2 +m3;

2. usage of the private good by the �rm is X(~m) = Y(~m)/';

3. three personalized prices are de�ned as follows:

q1(~m) =
1
3' +m2 -m3,q2(~m) =

1
3' +m3 -m1, and q3(~m) =

1
3' +m1 -m2;

4. the allocation of the private good is given by xi(~m) = wi - qi(~m)Y(~m);

5. and the demand for the public good is y(m) = Y(m).

To see that the mechanism is feasible, note that q1(~m)+q2(~m)+q3(~m) = 1/', so that
P

i x
i(~m) + X(~m) =

P
i w

i - 1
'
Y(~m) + 1

'
Y(~m) =

P
i w

i,

while
'X(~m) = Y(~m) = y(~m).

Importantly, note that each qi(~m) is independent frommi, so that, abusing notation slightly,
we just write qi(m¬i).

T������ 1 (W�����, G������L������). The mechanism above implements the set of Lindahl
equilibrium allocations of the economy.

Proof. The more interesting part of the theorem is that every Nash equilibrium allocation of
the game induces a Lindahl equilibrium allocation. To see that this is the case, suppose that
~m is a Nash equilibrium of the game. Then,m1 must solve

max
m

�
v1(m,m2,m3) = u1(w1 - q1(m2,m3)(m+m2 +m3),m+m2 +m3)

 
,

or, equivalently,
max
y

�
u1(w1 - q1(m2,m3)y,y)

 
,

which is the problem that de�nes individual rationality in the de�nition of Lindahl equi-
librium at prices q1 = q1(m2,m3). The same is true, mutatis mutandis, for the other two
individuals.

5



That [X(~m), Y(~m)]maximizes the pro�ts of the �rm in the de�nition of Lindahl equilibrium
follows from the fact that q1(~m) + q2(~m) + q3(~m) = 1/', while market clearing is given
by the feasibility of the mechanism.

The other direction, that every Lindahl equilibrium allocation corresponds to a Nash equi-
librium, is straightforward once one notes that the system

m1 +m2 +m3 = y

m1 -m2 = q3 - 1
3'

-m1 +m3 = q2 - 1
3'

+m2 -m3 = q1 - 1
3'

has one (and only one) solution given (q1,q2,q3,y).

6



University of California, Davis

ECN200, General Equilibrium Theory
LN9: Externalities, Equilibrium and E�ciency

The �����makes only one explicit assumption—that all consumers have locally non-satiated
preferences. Implicitly, though, the theorymakes others: that anonymous and perfectly com-
petitive markets are functioning for each one of the commodities; and that each individual’s
consumption a�ects only her well-being. We now concentrate on the latter assumption and
study the extreme extent to which the conclusion of the theorem depends on it.

1. N����W����� E���������

Consider an exchange economy where individual preferences are de�ned over RLI
+ and can

be represented by utility functions ui : RLI
+ ! R, so that each individual’s utility depends

(potentially) on the whole allocation of consumption bundles, ~x = (x1, . . . , xI). To keep the
notation short, one usually denotes ui(~x) = ui(xi, x¬i), where

x¬i = (x1, . . . , xi-1, xi+1, . . . xI)

is the sub-pro�le of consumption bundles of all the members of society other than i.

In this case, the de�nition of competitive equilibrium must take a position on how each
individual understands the determination of the others’ consumption bundles. The most
common de�nition is to assume that she takes those other bundles as given.

D��������� 1. A competitive, or Nash-Walras, equilibrium for this economy is a pair consisting

of a vector of prices and an allocation, (p,~x), such that

i. for each i, bundle xi solves the problem

max
x

�
ui(x, x¬i) : p · x 6 p ·wi

 
;

ii. markets clear:
P

i x
i =

P
i w

i.

1



The de�nition of Pareto e�ciency is as before: a feasible allocation is Pareto e�cient if there
does not exist another feasible allocation where at least one individual is better o� and none
is worse o�.

The main message of this note is that the conclusion of the ����� fails in the presence
of externalities, and quite badly: in almost all economies with externalities, all equilibrium
allocations are ine�cient.

2. T�� G������ C���

Consider again the general case, and suppose that (p,~x,~�) is a competitive equilibrium for
the economy with endowments ~w. If the allocation is interior, the �rst-order conditions for
individual rationality require that

Dxiui(~x) = �ip (1)

for each i.

On the other hand, if ~x is Pareto e�cient it must solve

max
x̂

�
u1(x̂) | ui(x̂) > ui(~x), for all i > 2, and

P
i x̂

i =
P

iw
i
 
.

Writing the Lagrangean of this problem as

L(x̂,µ,⌫) = u1(x̂) +
X

i>2

µi[ui(x̂)- ui(~x)] + ⌫ ·
X

i

(wi - x̂i),

and assuming again interiority, we can �nd the necessary �rst-order conditions for e�ciency:
that for each i

X

i 0

µi 0Dxiui 0(~x) = ⌫, (2)

where µ1 = 1 is chosen to simplify the notation.

If the competitive equilibrium allocation is e�cient, we can use Eq. (1) to re-write Eq. (2)
as

µi�ip+
X

i 0 6=i

µi 0Dxiui 0(~x) = ⌫ (3)

for each i.
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In the case of no externalities,Dxiui 0(x) = 0when i 6= i 0, and Eq. (3) has obvious solutions in
~µ and ⌫. Under non-trivial externalities, the system is extremely unlikely to have a solution,
as long as L > 2 and I > 2, since it has LI equations and only L+ I- 1 variables.

3. S�����������: A ������ ���� ��� ������������

Unlike before, a full analysis of the failure of the ����� would require that we formalize the
idea of “almost all pro�les of preferences and endowments,” which is not easy. Instead, we
illustrate the result and (part of) the required technique in a simple setting: a two-person
exchange economy with L commodities, where consumption of the �rst commodity a�ects
not just the person who is demanding it, but also the other individual (in a separable man-
ner).

That is, suppose that each individual’s utility is ui : RL+1 ! R, given by

ui(xi, x¬i
1 ) = vi(xi) + ↵ix¬i

1 ,

where¬i is used to denote the person other than i, and vi : RL
+ satis�es all the assumption of

smooth exchange economies. For this economy, the following function yields the extended
approach to equilibrium analysis: with prices normalized to N1, de�ne

F(p, x1, x2, �1, �2,w1,w2) =

0

BBBBBBBB@

Dv1(x1)- �1p

p · (w1 - x1)

Dv2(x2)- �2p

p · (w2 - x2)

x̃1 + x̃2 - w̃1 - w̃2

1

CCCCCCCCA

.

Since the external e�ects are separable, it follows that the roots of F are the competitive
equilibria of the economy, at the corresponding endowments.

Our goal is to prove that generically on preferences and endowments, all competitive equi-
librium allocations of the economy are Pareto ine�cient. Before proving this, we need to
introduce a technical lemma.

L���� 1. Let (p, x1, x2, �1, �2) be a competitive equilibrium for the economy with endowments

(w1,w2), and suppose that the allocation (x1, x2) � 0 is Pareto e�cient. Then, it must be true

that ↵1�2 = ↵2�1.

3



Proof. Allocation (x1, x2) � 0 is Pareto e�cient only if it solves the problem

max
x̂1,x̂2

�
u1(x̂1, x̂21) | u2(x̂2, x̂11) > u2(x2, x11) and x̂1 + x̂2 = w1 +w2 .

A necessary condition for this is that for some µ > 0 and ⌫ � 0,

Dv1(x1) + µ

0

@↵2

0

1

A =

0

@↵1

0

1

A+ µDv2(x2) = ⌫, (4)

which implies that

@v1

@x11
(x1) + µ↵2 = µ

@v2

@x21
(x2) + ↵1 and @v1

@x12
(x1) = µ

@v2

@x22
(x2). (5)

(This simply means that the marginal rates of substitution, properly measured to consider
external e�ects, should be equalized across the two individuals.)

At an interior competitive equilibrium,Dv1(x1) = �1p andDv2(x2) = �2p. Substitution into
Eq. (5) gives

�1 + µ↵2 = µ�2 + ↵1 and �1 = µ�2

using the fact that p1 = 1.

T������ 1. Except on a negligible set of pro�les (w1,↵1,w2,↵2) all competitive equilibrium

allocations of the economy are Pareto ine�cient.

Proof. De�ne the function

G(p, x1, x2, �1, �2,w1,w2,↵1,↵2) =

0

@F(p, x1, x2, �1, �2,w1,w2,↵1,↵2)

↵1�2 - ↵2�1

1

A ,

and note that, for some row vector �,

DG =

0

@Dx,�,p,wF D↵F

� (�2,-�1)

1

A =

0

@Dx,�,p,wF 0
� (�2,-�1)

1

A ,

where the arguments of functions F and G are left implicit.

We already know that when F = 0 matrix Dx,�,p,wF has full row rank. This implies, since
�2 6= 0, that so does matrix DG, when G = 0. In other words, G t 0.

By the transversal density theorem, we have that G(·,w1,↵1,w2,↵2) t 0 except on a negli-
gible subset on (w1,↵1,w2,↵2). This means that, generically, when G = 0 matrix Dx,�,pG

4



has full row rank. But this is impossible since this latter matrix has one more row than it has
columns, so transversality requires that, generically, the equality G = 0 be impossible.

Explicitly, the previous result means that for almost all values (w1,↵1,w2,↵2), if

F(p, x1, x2, �1, �2,w1,w2) = 0,

then ↵1�2 6= ↵2�1. By the previous lemma, the latter implies the result.

4. S��������

For the sake of simplicity, maintain the setting and assumption of the previous section.

4.1. The old approach: Pigouvian taxation

Imagine that the government introduces the following �scal policy: for each unit of com-
modity 1 that she buys, consumer i is levied a tax of ⌧i; and there is a lump-sum transfer of
mi given to each i.

D��������� 2. Given the �scal policy, a competitive equilibrium for this economy is a pair

consisting of a vector of prices and an allocation, (p, x1, x2) such that

i. for each i, bundle xi solves the problem

max
x

�
ui(x, x¬i) : p · x+ ⌧ix1 6 p ·wi +mi

 
;

ii. markets clear:
P

i x
i =

P
i w

i; and

iii. the �scal policy is balanced: m1 +m2 = ⌧1x11 + ⌧2x21.

T������ 2. Suppose that allocation (x̂1, x̂2) � 0 is Pareto e�cient. There exists a �scal policy

for which a competitive equilibrium allocation is (x̂1, x̂2).

Proof. Since the allocation is interior and e�cient, it satis�es Eq. (4). Let the �scal policy be
taxes ⌧1 = -µ↵2 and ⌧2 = -↵1, and transfersm1 andm2 yet to be determined; let prices be
p = ⌫.
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For individual rationality, at the right transfers, it su�ces to show that x̂i satis�es the �rst-
order conditions of the optimization problem, given x̂¬i, prices p and tax ⌧i. By direct com-
putation, those conditions are that

Dvi(xi) = �i

0

@p+

0

@⌧i

0

1

A

1

A = �i

0

@⌫+

0

@↵¬i

0

1

A

1

A

which occurs at xi = x̂i, by Eq. (4), with �1 = 1 and �2 = 1/µ. Of course, the transfers have
to be chosen such that bundle x̂i is just a�ordable for i:

mi = p · x̂i + ⌧ix̂i1 - p ·wi.

This construction guarantees individual rationality, whereas market clearing is given by fea-
sibility of the allocation. It only remains to show that the policy is �scally balanced. Indeed,

m1 +m2 = ⌧1x̂11 + ⌧2x̂21 - p · (w1 +w2 - x̂1 - x̂2) = ⌧1x̂11 + ⌧2x̂21.

by market clearing.

4.2. The Coasian solution: property rights

Alternatively, suppose that the government creates two more “goods”. For each unit of com-
modity 1 that individual i wants to consume, she must buy one unit of consumption permits
from individual ¬i. The properties are non-substitutable and each i owns an in�nite amount
of permits that she can sell to ¬i. The price of the consumption permits is determined com-
petitively in markets, so the government’s only role is the enforcement of the requirement
of permits.

D��������� 3. Given the allocation of property rights, a competitive equilibrium with con-

sumption permits for this economy is a pair consisting of a vector of prices and an allocation,

[(p,q1,q2), (x1, z1), (x2, z2)] such that

i. for each i, bundle (xi, zi,Zi) solves the problem

max
x,z,Z

�
ui(x,Z) : p · x+ q¬iz 6 p ·wi + qiZ and x1 = z

 
;

ii. goods markets clear:
P

i x
i =

P
i w

i; and
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iii. permits markets clear: z1 = Z2 and z2 = Z1.

T������ 3. Suppose that both individuals have locally non-satiated preference. If

[(p,q1,q2), (x1, z1), (x2, z2)]

is a competitive equilibrium given the property rights, then allocation (x1, x2) is e�cient.

Proof. Let (x̂1, x̂2) be Pareto superior to (x1, x2), even though [(p,q1,q2), (x1, z1), (x2, z2)] is
a competitive equilibrium. By local non-satiation, for both individuals

p · x̂i + q¬ix̂i1 > p ·wi + qix̂¬i
1 ,

and the inequality is strict for at least one of them. Adding,

p · (x̂i + x̂2) + q2x̂11 + q1x̂21 > p · (w1 +w2) + q1x̂21 + q2x̂11,

or
p · (x̂i + x̂2) > p · (w1 +w2),

which means that the superior allocation (x̂1, x̂2) cannot be feasible.
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