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Let X be a nonempty subset of the finite-dimensional Euclidean space RK, and denote by B0

the set of all bounded functions f : X→ R. The subset of continuous functions in B0 is denoted
by B.

1. Set B0 as a Metric Space

Define the function d : B0 × B0 → R by

d(f,g) = sup
x∈X

|f(x) − g(x)|,

which is well defined since all functions in B0 are bounded.
It is straightforward that d satisfies the following propertes: for all f,g ∈ B0, d(f,g) > 0,

with equality if, and only if, f = g; and d(f,g) = d(g, f). Importantly, note that, for all
f,g,h ∈ B0,

d(f,g) = sup
x∈X

|f(x) − g(x)|

6 sup
x∈X

{|f(x) − h(x)|+ |h(x) − g(x)|}

6 sup
x∈X

{|f(x) − h(x)|}+ sup
x∈X

|h(x) − g(x)|}

= d(f,h) + d(h,g),

where the first inequality comes from the triangle inequality of the real numbers, and the
second one by definition of the supremum. This property is important, and we will later refer
to it as the triangle inequality itself.

The four properties of function d make it a metric for universe B0. This metric is usually
called the sup metric, and the pair (B,d) is, by definition a metric space.
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2. Sequences and Convergence in B0

A sequence in B0 is a function φ : N → B0, as in Real Analysis, and we will maintain the
simplified notation (fn)

∞
n=1, where fn = φ(n), for sequences.

The following definitions are verbatim of their analoga in Real Analysis. Sequence (fn)
∞
n=1

is said to be Cauchy if for all ε > 0, there exists n∗ ∈ N such that whenever n,n ′ > n∗,
d(fn, fn ′) < ε. The sequence is said to converge to f ∈ B0 if for all ε > 0, there exists
n∗ ∈ N such that whenever n > n∗, d(fn, f) < ε. Shorthand notation in the latter case is that
limn→∞ fn = f, or simply that fn → f.

3. Completeness of (B,d)

It is not hard to show that any convergent sequence must also be Cauchy. The following result,
which need not be obvious, is that the opposite causality is true as well.

Theorem 1 (Completeness). Any Cauchy sequence in (B,d) is also convergent.

For the proof of this result, we will proceed in a series of steps. Before the first one of them,
it is important to notice that, if (fn)∞n=1 is Cauchy, then

∀ε > 0,∃n∗ε ∈ N : ∀n,n ′ > n∗ε,d(fn, fn ′) < ε.

This implies that

∀ε > 0,∃n∗ε ∈ N : ∀n,n ′ > n∗ε, ∀x ∈ X|fn(x) − fn ′(x)| < ε. (1)

Notice that in this statement n∗ε depends on ε but not on x.
Now, fix a Cauchy sequence (fn)

∞
n=1. Our goal is to show that this sequence converges to

some limit f ∈ B.

Step 0: Construction of a candidate to be the limit: For each x ∈ X, note that Eq. (1)
implies that the sequence (fn(x))∞n=1, which lies in R, is Cauchy. Since R is complete, it follows
that fn(x) → yx, for some yx ∈ R. Letting f(x) = yx for each x ∈ X, we construct a function
f : X→ R.

Step 1: f ∈ B0: Note that, since each fn is bounded, we have that for some bn ∈ R it is true
that |fn(x)| 6 bn for all x ∈ X. Also, by Eq. (1),

∀n > n∗1,∀x ∈ X, |fn(x)| 6 bn∗1 + 1.

If we now let
b = max{b1, . . . ,bn∗1−1,bn∗1 + 1},

2



it is by construction that |fn(x)| 6 b for all n ∈ N and all x ∈ X. By convergence, since limits
preserve weak inequalities, |f(x)| 6 b for all x ∈ X, so function f is bounded.

Step 2: fn → f: Fix ε > 0 and n > n∗ε/3. Now, for any x ∈ X, we know that

∃nx ∈ N : ∀n > nx, |fn(x) − f(x)| 6
ε

3
.

Then, letting n ′ = max{n∗ε/3,nx}, it follows from triangle inequality on the real line and
construction that

|fn(x) − f(x)| 6 |fn(x) − fn ′(x)|+ |fn ′(x) − f(x)|

< sup
x ′∈X

|fn(x
′) − fn ′(x

′)|+
ε

3

<
2ε
3

Since the latter is true for all x ∈ X, it follows that for all n > n∗ = n∗ε/3,

d(fn, f) = sup
x∈X

|fn(x) − f(x)| 6
2ε
3
< ε.

Step 3: f ∈ B: Before proceeding, note that the previous step implies that

∀ε > 0,∃ñε ∈ N : ∀n > ñε, ∀x ∈ X, |fn(x) − f(x)| < ε. (2)

Importantly, in this statement ñε is, as in Eq. (1), independent of x.
We now want to prove that f is continuous at (any) x ∈ X. To see this, let ε > 0 and note

that for n = ñε/3, since fn is continuous,

∃δ > 0 : ∀x ′ ∈ Bδ(x) ∩ X, |fn(x ′) − fn(x)| <
ε

3
.

Then, for all x ′ ∈ Bδ(x) ∩ X,

|f(x ′) − f(x)| 6 |f(x ′) − fn(x
′)|+ |fn(x

′) − fn(x)|+ |fn(x) − f(x)|

< 2 sup
x ′′∈X

|fn(x
′′) − f(x ′′)|+

ε

3

< ε.

Q.E.D.

4. Banach’s Fixed Point Theorem

The following theorem is important is the theory of dynamic programming. We say that a
function T : B → B is said to be a contraction if there exists a number α < 1 such that, for
all f, f ′ ∈ B,

d[T(f), T(f ′)] 6 αd(f, f ′).
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The infimum of the numbers α for which the latter condition holds is called the Lipschitz
constant, or modulus, of T

Theorem 2 (Banach). If T : B → B is a contraction, then there exists a function f̄ ∈ B
such that T(f̄) = f̄. Such f̄ is unique, and for any f ∈ B, the sequence constructed by
letting

f1 = f and fn = T(fn−1) for all n > 2

converges to f̄.

Proof: Let α be the modulus of T . Fix some f ∈ B, and construct a sequence by letting

f1 = f and fn = T(fn−1) for all n > 2.

By construction, for all n ∈ N, d(fn+1, fn) 6 αn−1d(f2, f1). Since α < 1, this implies that
(fn)

∞
n=1 is Cauchy. By Theorem 1, fn → f̄ for some f̄ ∈ B.
To see that T(f̄) = f̄, note that for all ε > 0, since we can find n∗ ∈ N such that d(fn, f̄) <

ε/2 whenever n > n∗, then

d[T(f̄), f̄] 6 d[T(f̄), fn∗+1] + d(fn∗+1, f̄)

= d[T(f̄), T(fn∗)] + d(fn∗+1, f̄)

6 αd(f̄, fn∗) + d(fn∗+1, f̄)

<
1+ α
2

ε

< ε.

Since this is true for all ε > 0, it must be that d[T(f̄), f̄] = 0.
All that remains to show is that f̄ is unique. To see this, let f̃ ∈ B such that T(f̃) = f̃.

Then,
d(f̄, f̃) = d[T(f̄), T(f̃)] 6 αd(f̄, f̃).

Since α < 1, the latter is possible only if d(f̄, f̃) = 0, so f̃ = f̄. Q.E.D.
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