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Syllabus

I. Instructor: Andrés CarvajalOffice number: SSH1101e-Mail address: acarvajal@ucdavis.eduOffice hours: Mon, 10h00 – 12h00, or by appointmentLectures: Tue and Thu, 13h40 – 15h00, at Olson 118
II. Teaching Assistant: Keisuke TeepleOffice number: SSH120e-Mail address: kwteeple@ucdavis.eduOffice hours: Wed, 16h00 – 18h00Discussion: Thu, 18h10 – 19h00 at SocSci 90 and 19h10 – 20h00, at Wellman 202
III. Goals: Students will become comfortable with the most important results of the theory ofdecision-making under uncertainty, including portfolio theory and counter-intuitive compar-ative statics; and with the theory of incentives and imperfect information. Importantly, thestudents will acquire the analytical abilities to understand the existing literature as well asmodelling abilities to apply these tools to new settings.
IV. Evaluation: The mark for the course will based on weekly problem sets, a midterm and afinal exam. The problem sets will be due at the end of the lectures on Thursday of eachweek; the midterm will be on October 31; the final on December 11 at 18h00. The averagemark of the problem sets will be 20% of the final mark; the midterm exam will count 30%,and the remaining 50% of the mark will be the final exam.
V. Pre-requisites: Students are required to know basic calculus, probability and intermediatemicroeconomics. In particular, it is assumed that the students have a good understanding ofclassical demand theory [JR §3.2 to §4.3] and producer theory [JR §5].

VI. Academic dishonesty: Please see the attached code of conduct. For the protection of theintegrity of our institution and the honest students, any student found violating the code ofconduct will be reported and given the most severe consequences we have the authority toimpose. This will amount to an F in the entire course.
VII. Outline:

Week 1: Review of probability theory: random variables; distribution, probability anddensity functions; expectation and variance.
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Weeks 2–6: Decision theory under uncertainty: Preferences under uncertainty; Ex-pected Utility Theory; Risk attitudes; Optimal savings; Optimal output; Stochasticdominance; Optimal portfolio; Non-EU theories. [Lecture notes, JR §2.4 and W §4.1to §4.4, §5.2 and §6.2]Weeks 7–10: An introduction to the economics of information: Insurance markets, à laRotschild–Stiglitz; Akerlof’s markets for lemons; Capital markets with adverse selection;Spence’s Screening problem; Credit rationing in financial markets, à la Stiglitz–Weiss;Investment and financial markets, à la Bernanke–Gertler. [Lecture notes, JR §10.1, FR§2.3 and §5.4, and W §9]Week 11: An introduction to the economics of incentives: Agency theory and moralhazard.[Lecture notes, JR §10.2, W §11, FR §2.5, §4 and §5.5]
VIII. References: Lecture notes are available for all the content of the course. The referencesabove are for:

FR: Freixas, X., and J.C. Rochet (2008). Microeconomics of banking, 2/e. MIT Press.JR: Jehle, G.A., and P.J. Reny (2011). Advanced microeconomic theory, 2/e. Pearson: Pren-tice Hall.W: Wolfstetter, E. (1999). Topics in microeconomics: Industrial organization, auctions and
incentives. Cambridge University Press.

None of these books is mandatory, but the closest one to our material, both in terms ofcontent and of level, is JR.
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Decision Theory





Note 1

Preferences

We, human beings, are complicated. Our behavior is difficult to model. Here, we consider theproblem of a decision-maker who has to choose from a set of alternatives. The decision-maker could be a person, or a group of people (for instance a family), but for simplicity we willtreat the decision-maker as a person. After a brief general treatment, we will consider a set ofalternatives that is natural for the case of uncertainty.In order to make the problem tractable, we will abstract from the question of how the set ofalternatives is determined, and will model the person’s behavior through just one key element:what she likes.
1.1. Choice space and preferences
Consider a situation in which a person faces a nonempty set D of alternatives. We refer to
D as the choice space. The problem we study in decision theory is how the person makesher choice, when she is allowed to pick one alternative from D , or perhaps from a subset of it.The key step in our analysis of the person’s choice is to model “what she wants.” For us, theindividual’s preferences are subjective judgments about the relative desirability of the availablechoices: given two alternatives, preferences are defined by her answer to the question “Is the firstalternative at least as good as the second one?” Formally, then, the decision-maker’s preferencesare a binary relation % defined on the choice set: given a pair of alternatives p and p ′, we write
p % p ′ if, according to the person’s tastes, p is at least as good as p ′. We take the person’spreferences as exogenous, in the sense that we do not explain where they come from. Instead, weconcentrate on the problem of studying the individual’s behaviour given her preferences, underthe assumption that these preferences will not be affected by the person’s choices.We start by studying properties that the individual’s preferences may (but need not) satisfy.We first study properties of a binary relation under which it makes sense to identify this relationwith someone’s preferences: binary relation % is complete if for any p and any p ′ , p, either
p % p ′ or p ′ % p; it is reflexive if for any p, p % p; and it is transitive if p % p ′ and p ′ % p ′′ imply
p % p ′′. If the relation complete, reflexive and transitive, we say that it is rational.Reflexivity is imposed for consistency with our interpretation of ‘weak’ preference. The othertwo properties are less innocuous. Decision-makers with incomplete preferences may find in-stances in which they are unable to choose: they simply cannot make a value judgment aboutthe relative (subjective) quality of two alternatives. People with non-transitive preferences are
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open to full rent extraction, as a person could find a cycle of choices for which the person iswilling to pay a positive premium at each step.In economics, one usually assumes that the decision-maker under consideration has rationalpreferences, although in some cases —e.g. very complicated problems— it may be reasonableto consider that individual’s preferences are incomplete; also, some cases of nontransitive pref-erences are sometimes observed in real life. In any case, from now on we fix a rational binaryrelation %, and define the following (induced) binary relations on the choice set: the strict pref-
erence relation, �, by saying that p � p ′ if it is not true that p ′ % p; and the indifference relation,
∼, by saying that p ∼ p ′ if it is true that p % p ′ and p ′ % p.
Example 1.1. Argue that � is transitive, but not reflexive. Could this relation be complete?
Answer: For transitivity, note that x � y and y � z imply that x % y and y % z . The latterimplies that x % z , by transitivity of %. If it was not true that x � z , then, by definition andcompleteness of %, it would have to be true that z % x , and hence, by transitivity of %, that z % y,which contradicts the fact that y � z .To see that � is not reflexive, note that if for some x it was true that x � x , then it wouldnot be true that x % x , by definition of �, but this would contradict reflexivity of %.Relation � can be complete: imagine the relation >, derived from ≥ over the real line. Inmany cases in economics, though, � is incomplete. The best example is given by consumertheory under certainty. �

Exercise 1.1. Argue that � is transitive, but not reflexive, and that ∼ is reflexive and transitive.Could this relation be complete? Could it be rational?
It is most usual in economics to represent a decision-maker’s preferences by a function thatgives a higher value the more the person likes an alternative. That is, we say that binary relation

% is represented by function U : D → R if U(p) ≥ U(p ′) occurs when, and only when, p % p ′.We say that % is representable if there is some function U that represents it.The function U that represents % is called utility function. Notice that if a preference relationis representable, then there are infinitely many different utility functions that represent it. Allthese representations will have the same level sets (i.e. the same ordinal information), but maygive nontrivially different utility levels (i.e. different cardinal information). It is for this reasonthat interpersonal comparisons of utility are problematic.
Exercise 1.2. Argue that representability implies rationality. Do you think that rationality impliesrepresentability?

Note that in some cases the existence of a utility function that represents an individual’spreferences is very easy to establish. For example, if D is finite, then any complete preferencerelation on it will be representable. But there are also well-known cases of preference relationsthat cannot be represented by utility functions, because, in some sense, they partition the choicespace into “too many” equivalence classes.
A. Carvajal
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1.2. Uncertainty and expected utility
The main interest in these lectures will be the case in which the consequences of the decision-maker’s choices are not fully determined by her, and are subject to uncertainty. For this purpose,it is useful to endow our problem with a probabilistic framework. Let X , ∅ be a set of outcomes.This could be an abstract set, or, if you would like more definiteness, a set X ⊆ R of monetaryvalues. Also, let ∆ be the space of all probability distributions over X . For example, if there areonly finitely many possible outcomes, we can write X = {1, . . . , X }, and the set of probabilitydistributions is ∆ = {p ∈ RX+ |

∑
x px = 1}. Figs. 1.1 and 1.2 represent, respectively, the space ∆of lotteries when X = 2 and X = 3. For spaces with more than three elements, it is not possibleto have a graphical representation.In the current setting of uncertainty, we may want to have special properties on the utilityfunction that represents the person’s preferences: we say that % has an expected utility (EU)

representation if there exists a function u : X → R such that for any pair of lotteries p and
p ′, we have that p % p ′ if, and only if, E p(u) ≥ E p ′(u). In this case, we can define the utilityfunction over lotteries U(p) = E p(u), and it is immediate that U represents %.When a preference relation has EU representation, any function U that represents them isknown as expected utility or von Neumann–Morgenstern function. Given a U , the associatedfunction u is known as its Bernoulli index.
Example 1.2. A decision-maker faces uncertainty over the set of outcomes X = {1, 2, 3, 4}. Herpreferences over lotteries are given by

p % p ′ if, and only if, p1 + p2 ≥ p ′1 + p ′2.
Find a Bernoulli index that gives an EU representation of these preferences.1
Answer: Any utility index u : {1, 2, 3, 4} → R such that u(1) = u(2) > u(3) = u(4) will do; theindex with u(1) = u(2) = 1 and u(3) = u(4) = 0 is the most immediate choice. �

A. Carvajal
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Example 1.3. A decision-maker faces uncertainty over the set of outcomes X = {1, 2}. Herpreferences over lotteries are represented by the following function:
U(p) =

{
p1 if p2 < 1/2;
0, otherwise.

Can these preferences have an EU representation?
Answer: No, they cannot. To see this, suppose, by way of contradiction, that there exists anEU representation, and let its Bernoulli index be u. Then, u(1) = U((1, 0)) > U((0, 1)) = u(2),which implies that, for any 0 < p ≤ 1, pu(1) + (1 − p)u(2) > u(2). This would imply that
p � (0, 1) whenever p2 < 1, which is not the case. �

Example 1.4. A decision maker faces uncertainty over the set of outcomes X = {1, 2}. Herpreferences over lotteries are that p % p̃ when, and only when, p1p2 ≥ p̃1p̃2 .a. Is she rational?
b. Draw her indifference map.
c. Do her preferences admit an EU representation?
Answer: a. Yes: any preference relation that can be represented by a utility function is complete,reflexive and transitive; in this case, function U(p) = p1p2 represents the preferences.
b. Fig 1.3 shows three indifference curves: one of them is the red dot, located at (1/2, 1/2);another one is given by the two blue dots, located at (1/4, 3/4) and (3/4, 1/4); and the thirdone is given by the two green dots, which are located at (0, 1) and (1, 0). To the right of

(1/2, 1/2) the direction if improvement is up and to the left; to the left, it is down and to theright. This is indicated by the six arrows in the figure.
c. No, they do not. According to her preferences (1, 0) ∼ (0, 1). If these preferences had an EUrepresentation, it should satisfy u(1) = u(2), in which case all lotteries would be indifferentfor her, and her map would consist of only one indifference curve. This is not the case, asseen in part (b). �

Example 1.5. A decision maker faces uncertainty over the set of outcomes X = {1, 2, . . . , X }. Herpreferences over lotteries are that p % p̃ when, and only when,
α max{p1, p2, . . . , pX }+ β min{p1, p2, . . . , pX } ≥ α max{p̃1, p̃2, . . . , p̃X }+ β min{p̃1, p̃2, . . . , p̃X },where α ≥ β are fixed coefficients.

A. Carvajal
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a. Is she rational?
b. Assuming that there are only two states, draw her indifference map and determine conditionsunder which her preferences admit an EU representation.
c. Do the conditions you just gave in part (b) suffice when there are three states of the world?
Answer: a. Yes: function

U(p) = α max{p1, p2, . . . , pX }+ β min{p1, p2, . . . , pX }
represents these preferences, and any representable relation is rational.

b. Below the 45◦ line, p1 > p2 so the utility level is U = αp1 + βp2; above it p2 > p1 so theutility level is U = αp2 + βp1; at the line, U = (α + β)/2. Fig 1.4 shows three indifferencecurves for the case α > β: one of them is the red dot, located at (1/2, 1/2); another one isgiven by the two blue dots, located at (1/4, 3/4) and (3/4, 1/4); and the third one is given bythe two green dots, which are located at (0, 1) and (1, 0). To the left of (1/2, 1/2) the directionof improvement is up and to the left; to the right, it is down and to the right. This is indicatedby the four arrows in the figure.When α = β , the utility is U = α +β everywhere, so the map consists of a single indifferencecurve covering the whole space of lotteries.For the case α > β , the map is inconsistent with EU. If α = β , the preferences have an EUrepresentation with u(1) = u(2).
c. The condition is insufficient. Suppose that α = β = 1, and X = 3. By definition, (1, 0, 0) ∼

(0, 1, 0) ∼ (0, 0, 1), so an EU representation would require that u(1) = u(2) = u(3). Thiswould imply that (1, 0, 0) ∼ (1/3, 1/3, 1/3), but
max{1, 0, 0}+ min{1, 0, 0} = 1 , 2

3 = max{ 13 , 13 , 13}+ min{ 13 , 13 , 13} .
For X ≥ 3, EU would require α = β = 0.

�

A. Carvajal
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Figure 1.4: Indifference map for Example 1.5, when α > β
Exercise 1.3. A decision-maker faces uncertainty over the set of outcomes X = {1, 2, 3}. Supposethat her preferences are represented by U(p) = max {p1, p2}+ap3, where a > 0 is a parameter.a. Rank the following lotteries according to this person’s preferences: p1 = (0, 1, 0), p2 =

(1/2, 1/2, 0), p3 = (2/3, 1/3, 0), and p4 = (0, 0, 1).b. Could these preferences have an EU representation?c. If this decision-maker could have any lottery p that she wants, would she ever choose onewith p1 > 0 and p2 > 0? How about one with p3 , 0?Exercise 1.4. Suppose that there are three possible states of the word, and an individual’spreference relation over lotteries is such that (1, 0, 0) ∼ (0, 1, 0) ∼ (0, 0, 1). Argue that if thisperson’s preferences admit an EU representation, then she is indifferent between all possiblelotteries.Exercise 1.5. Suppose that a person’s income is a random variable X defined on the interval
[0, 4], and her preferences are as follows: for any pair of lotteries p and p ′, p % p ′ if, and only if,the probability of earning at least $2 under lottery p is greater than or equal to the probabilityof earning at least $2 under lottery p ′.a. Argue that these preferences admit an EU representation.b. Argue that this person strictly prefers to have her income distributed uniformly in (0, 3) thanto have $1.5 for sure.Note that, by definition, any increasing transformation of a utility function represents thesame preference relation as the function itself. For this reason, in economics, we often say thatutility functions have only “ordinal meaning.” In the case of preferences over lotteries the sameis true, but one has to be very careful: any increasing transformation of function U will representthe same preferences, but the same is true only for some very restricted transformations of u!Exercise 1.6. Argue that if an individual’s preferences have an EU representation with Bernoulliindex u(x), then the index ũ(x) = au(x) + b, for any numbers a > 0 and b, also gives an EUrepresentation of %.2The exercise tells us that the expectations of increasing affine transformations of u do rep-resent the same preference relation.3 The following proposition, which we state with no proof,

2 This is, it is true that p % p ′ if, and only if, ∑X
x=1 px ũ(x) ≥

∑X
x=1 p ′x ũ(x)?3 Function f is affine if for some numbers α and β , we have that f (u) = α + βu.

A. Carvajal
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says that any other transformations of u will change the preferences they represent. For thisreason, one often refers to the Bernoulli index as “cardinal utility index."
Proposition 1.1. Suppose that U and Ũ are EU representations of %. Let u and ũ be their
respective Bernoulli utility indices. Then, there exist numbers α and β > 0 such that ũ(x) =

α + βu(x) for every x.

Reading. The following is an excerpt of an article published in The New York Times. Discuss itcritically.
Las Vegas uses flashing lights and
ringing bells to create an illusion of
reward and to encourage risk taking.
Insurance company offices present a
more somber mood to remind us of our
mortality. Every marketer knows that
context and presentation influence our
decisions.
For the first time, economists are
studying these phenomena scientifi-
cally. The economists are using a new
technology that allows them to trace
the activity of neurons inside the brain
and thereby study how emotions influ-
ence our choices, including economic
choices like gambles and investments.
For instance, when humans are in
a “positive arousal state,” they think
about prospective benefits and enjoy
the feeling of risk. All of us are familiar
with the giddy excitement that accom-
panies a triumph. Camelia Kuhnen
and Brian Knutson, two researchers
at Stanford University, have found that

people are more likely to take a fool-
ish risk when their brains show this
kind of activation.

But when people think about costs,
they use different brain modules and
become more anxious. They play
it too safe, at least in the labora-
tory. Furthermore, people are espe-
cially afraid of ambiguous risks with
unknown odds. This may help explain
why so many investors are reluctant
to seek out foreign stock markets, even
when they could diversify their portfo-
lios at low cost.

If one truth shines through, it is
that people are not consistent or
fully rational decision makers. Pe-
ter L. Bossaerts, an economics profes-
sor at the California Institute of Tech-
nology, has found that brains assess
risk and return separately, rather than
making a single calculation of what
economists call expected utility.

From: Cowen, T., The New York Times, Economic Scene (April 20, 2006) “Enter the Neuro-Economists: Why Do Investors Do What They Do?”

A. Carvajal
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Note 2

Risk aversion

We now want to model the decision-maker’s taste for risk.1 We do this by studying the deci-sion-maker’s ranking of any risky lottery and the (degenerate) lottery that gives her theexpected return of the risky lottery with probability 1. For this to be possible, we must abandonthe simplifying assumption that X is some finite, abstract set. Instead, we now assume insteadthat X is some interval in R, which we can interpret as the space of wealth levels, X , of the in-dividual. A lottery in this setting is a probability distribution p over X , and we restrict attentionto lotteries for which an expected payoff is defined: there exists a real number E p(X ), such that∫
x dp(x) = E p(X ). For simplicity of notation, we identify a wealth level x with the degeneratelottery that gives that prize with probability 1.A risk neutral decision-maker is one who is always indifferent between the expected payoff ofa lottery, for sure, to the lottery itself. The individual is risk averse if she finds the sure expectedpayoff at least as good to the lottery, strictly so if she strictly prefers the expected payoff whenthe lottery is non-trivial. Formally, binary relation % is:
1. risk neutral if for any lottery p, E p(X ) ∼ p;
2. risk averse if for any lottery p, E p(X ) % p; and
3. strictly risk averse if for any lottery p such that E p(X ) , p, E p(X ) � p.
4. risk loving if for any lottery p, p % E p(X ).

2.1. Expected utility and risk aversion
Let us assume that relation % has an EU representation, with Bernoulli index u : X → R. Thefollowing result tells us that the decision-makers attitude toward risk is characterized by theshape of index u.
Proposition 2.1. EU-representable relation % is:

1. risk neutral if, and only if, u is affine.2
1 We may be tempted to say that if % is convex, in the sense that for all p the set {p ′ : p ′ % p} is convex, thenshe dislikes risk. But this would be a mistake: a convex combination of lotteries does not reduce their riskiness..2 Function u is affine if for some numbers α and β , we have that u(x) = α + βx .
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2. risk averse if, and only if, u is concave;

3. strictly risk averse if, and only if, u is strongly concave; and

4. risk loving if, and only if, u is convex;

We can easily see that this proposition is true, for a simplified case: lotteries that have onlytwo possible prizes, so that X = {x, x ′}. In this setting, if lottery p gives probability π to prize xand 1− π to x ′, risk aversion implies that
u (πx + (1− π)x ′) ≥ πu(x) + (1− π)u(x ′),

so it must be that the Bernoulli utility index u is concave. Under strict risk aversion, if p is notdegenerate, the latter inequality must always be strict, so u must be strongly concave. Finally,under risk neutrality we must always have an equality, so u must be both concave and convex,hence affine.
Example 2.1. Consider a decision-maker whose preferences over lotteries admit an EU represen-tation with Bernoulli utility index u(x) = √x , for non-negative income levels.
a. Can she be characterized as risk averse, strictly risk averse, or risk neutral?
b. How does your answer change if u(x) = x?
c. What if u(x) = x2?
Answer: a. Function u(x) = √x is strictly concave, so the first individual is strictly risk averse.
b. Function u(x) = x is linear, so in this case the agent is risk neutral.
c. Finally, function u(x) = x2 is (strictly) convex, so this individual loves risk!

�

Exercise 2.1. Consider a decision-maker whose preferences over lotteries admit an EU repre-sentation with Bernoulli utility index
u(x) =

{
4x, if x < 4;
x2, otherwise.

Can she be characterized as risk averse, strictly risk averse, risk loving or risk neutral?
2.2. Willingness to pay for insurance
Two measures of how averse to risk a person is are widely used. Given the result above, it is notsurprising that these measures are based on the curvature of the Bernoulli utility index. For theremainder of the section, we assume that u is differentiable twice; it is by its second derivativethat we will capture the curvature of u. We also assume that u ′ > 0.
A. Carvajal
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Suppose that our decision-maker has an income subject to risk, as it is determined by thelottery p. Let the expectation and the variance of this lottery be, respectively, E p(X ) = X̄ andVp(X ) = E p[(X − X̄ )2] = Σ . How much would she be willing to pay in order to secure an incomeof X̄ instead of running the lottery? Let Γ be this number, so that3

u(X̄ − Γ ) = U(p) = E p[u(X )].

Example 2.2. Consider the decision-maker of Example 2.1, and suppose that her income is dis-tributed uniformly over the interval (0, 1). How much would she be willing to pay to insureagainst this risk?
Answer: When u(x) = √x , we want to find Γ such that√

1/2 − Γ =

∫ 1
0

√
x dx = 2/3,

so Γ = 1/18 . For u(x) = x , 1/2 − Γ =
∫1
0 x dx = 1/2, so Γ = 0. Finally, if u(x) = x2 ,

(1/2 − Γ )2 =
∫ 1
0
x2 dx = 1/3,

so in this case Γ = 1/2 − 1/ √3 < 0. �

Example 2.3. A decision-maker has preferences over lotteries that admit an EU representation
with cardinal utility index

u(x) =
{
2x, if x ≤ 5;
15
2 + 1

2x, if x > 5.

a. What is her attitude toward risk?

b. Suppose that her expected income is $3, but it is subject to a random shock as follows: with
probability 1/2, she gains or loses $1. How much is she willing to pay to insure against this
shock?

c. Suppose now that her expected income is $7 while the shock is as before. Is she willing to
pay more or less to insure against the shock?

d. Suppose, finally, that the person’s expected income is $5, and the shock is still as before. Is
she now willing to pay more or less to insure against the shock? How do you make sense of
your answers?

Answer: a. Fig 2.1 shows this person’s Bernoulli index. It is a convex function, but not strictly,so she is risk averse, but not strictly. As the function is not linear, she is not risk neutral.
3 After the following expression, if there is no room for confusion we will not write the distribution explicitly, sothat E will appear instead of E p.
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b. In this case, her income can be $2 or $4 with equal probability. As these values are both onthe part of the domain where the function has a constant slope of 2, she behaves as if shewere risk neutral, and is willing to pay $0 for insurance.
c. Now her income can be $6 or $8 , which lie on the part of the domain where the function hasa constant slope of 1/2. Again, she behaves as if she were risk neutral and is willing to pay$0 for insurance.
d. This case is different, as her low income of $4 lies in a different part of the domain fromher high income of $6 . Here, concavity of the index means that she will be willing to pay astrictly positive premium for insurance. To confirm this, we must solve

2 × (5 − Γ ) = 1
2
[
2 × 4+

(15
2 + 1

2 × 6
)]
,

which gives Γ = 3/8 > 0.The intuition for these seemingly odd answers is that this person is rather odd herself: forsmall risks when her income is very low or sufficiently high, she acts as if she were riskneutral; but, at an intermediate income ($5) she behaves as if she were strictly risk averse.
�

- x

6u(x)

5

10

�
�
�
�
�
�
�
�
�
��

�
��

Figure 2.1: Bernoulli index for Example 2.3
Exercise 2.2. Consider the decision-maker of Exercise 2.1.
a. Suppose that this person’s wealth is $1, and she is offered the following gamble: a fair coinis tossed; if it comes up tails, she wins $3; if it comes up heads, she loses $1. How much isshe willing to pay for this gamble?
b. If her initial wealth was $5, would she be willing to pay more? Why?
A. Carvajal
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2.3. Absolute risk aversion
Finding Γ in general can be complicated, but we can study the last equality by approximatingits terms. For the right-hand side, notice that

E (u) ≈ E [u(X̄ ) + u ′(X̄ )(X − X̄ ) + 1
2u
′′(X̄ )(X − X̄ )2

]
= u(X̄ ) + 1

2u
′′(X̄ )Σ.

For the left-hand side, u(X̄ − Γ ) ≈ u(X̄ ) − u ′(X̄ )Γ. Equating, we get that
Γ ≈ −

1
2
u ′′(X̄ )
u ′(X̄ )

Σ.

It follows that the coefficient of absolute risk aversion, defined as
A(x) = −

u ′′(x)
u ′(x) ,is a good measure of the individual’s aversion to risk, when her expected wealth is x . To seewhat type of risk is captured by this coefficient, notice that we could reinterpret things as if theindividual had an expected income X̄ , subject to shocks Z = X − X̄ , where the shocks have meanE (Z ) = 0 and variance V(Z ) = E (Z 2) = Σ . Because of this, one usually understands that A(X̄ )is a good measure of the individual’s attitude to additive risk (of mean 0 and variance 2).

Example 2.4. Consider the decision-makers of Example 2.1. What are these individuals’ coeffi-cients of absolute risk aversion? How do they depend on the individuals’ expected income?
Answer: If u(x) =

√
x , then A(x) = 1/(2x), decreasing in income. If u(x) = x , then A(x) = 0,which is independent of income. Finally, if u(x) = x2 , then A(x) = −1/x , which is increasing inincome. �

Exercise 2.3. Consider a decision-maker whose preferences over lotteries admit an EU repre-sentation with Bernoulli utility index u(x) = −e−αx .a. What is the individual’s coefficient of absolute risk aversion, and how does it depend on theindividual’s expected income?
b. What if

u(x) = x1−α − 1
1− α ,where ρ , 1?

c. What if u(x) = ln x?4
Exercise 2.4. Consider a decision-maker facing risk. Her preferences over lotteries admit an EUrepresentation with Bernoulli utility index u(x) = √x. Suppose that her income is random, andis uniformly distributed over the interval [0, 4]. What proportion of her expected income wouldshe be willing to pay as a premium to insure against her income risk?

4 It’s useful to note that this function is the limit of the previous one, as α → 1.
A. Carvajal
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Exercise 2.5 (Harder). Consider a decision-maker whose preferences over lotteries admit an EUrepresentation with Bernoulli utility index u(x) = −1/x. She expects to have an income of w > 0.Suppose that she discovers that her income is subject to a random shock, so her actual incomewill be w +X , where X is a random variable following the uniform distribution over the interval
[−x̄, x̄], with 0 < x̄ < w .a. What is the decision maker’s expected utility in the absence of any shocks to her income?What is her expected utility in the presence of the shock to her income? What is her expectedincome? Does this make sense? Show that limx̄→0 E [u(X )] = u(w).
b. How much would she be willing to pay to insure against the random shock? What is hercoefficient of absolute risk aversion evaluated at her expected income? Let these values be
Γ (w, x̄) and A(w, x̄), respectively.

c. Show that limx̄→0 Γ (w, x̄) = 0 but, still, limx̄→0 A(w, x̄) = 2/w , 0. Does this make sense?
d. An insurance company offers this person partial insurance as follows: for a premium of Γ , shecan reduce her risk to half, so that her income is w+X/2. Write the equation that is necessaryto solve to determine how much would she be willing to pay for this contract? What is yourintuition for the sign of this number?
2.4. Relative risk aversion
Suppose now that, in the same situation as before, we ask what proportion of her expectedincome the decision-maker would be willing to spend to secure her income? Letting γ be thatproportion, we have that

u(X̄ − γX̄ ) = U(p) = E p[u(X )].Now,
u(X̄ − γX̄ ) ≈ u(X̄ ) − u ′(X̄ )γX̄ ,and, hence,
γ ≈ −

1
2
u ′′(X̄ )
u ′(X̄ )X̄

Σ = −
1
2
u ′′(X̄ )X̄
u ′(X̄ )

σ,

where
σ =

Σ
X̄ 2

= E (X − X̄
X̄

)2
= V(X − X̄

X̄

)
.

We thus get that the coefficient of relative risk aversion,
R(x) = −

u ′′(x)x
u ′(x)is a second measure of the individual’s attitude to risk, when her expected wealth is x . Thedifference is that this measure is designed for multiplicative risk of mean 0 and variance 2:suppose that the individual’s expected income is X̄ , but it is subject to proportional shocks ζX̄ ,with the random variable

ζ =
X − X̄
X̄

.
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Example 2.5. Consider the decision-makers of Example 2.1. What are these individuals’ coeffi-cients of relative risk aversion? How do they depend on the individuals’ expected incomes?
Answer: If u(x) = √x , then R(X̄ ) = 1/2. If u(x) = x , then R(X̄ ) = 0. Finally, if u(x) = x2 , then
A(X̄ ) = −1. In all cases, the coefficients are independent of income. �

Exercise 2.6. Consider the decision-makers of Exercise 2.3. What are these individuals’ coeffi-cients of relative risk aversion? How do they depend on the individuals’ expected incomes?
Reading. The following is an excerpt from an article in The Economist. Discuss it critically.

“Prospect theory” is an important con-
tribution to the study of economics.
It challenges some of the fundamen-
tal assumptions that economists have
made concerning human behaviour...

To understand prospect theory, you
need to know what it disagrees with.
The villain in this drama is “expected
utility theory”, a series of assump-
tions about human behaviour. Ex-
pected utility theory says that people
are good at assessing probabilities —
people know that their aeroplane (al-
most definitely) will not crash, so do
not feel nervous about the flight. The
theory also states that people experi-
ence good things or bad things equally
— it is as pleasurable to find £5 on the

street, as it is painful to lose £5.
Prospect theory disagrees with these
two assumptions (among others). Its
followers have used a barrage of
psychological tests—the new vogue
in economics—to reach their conclu-
sions. The theory shows that people
are in fact terrible at assessing prob-
abilities (they are poor at “probabil-
ity weighting”). People feel nervous
on planes, and no amount of statis-
tical reasoning will rid them of their
anxiety.
The theory also shows that people find
bad things relatively worse than they
find good things good. People tend to
find losing £5 agonizing, yet are only
mildly happy to find £5 on the floor.

From: Free exchange, The Economist, Economics (August 5th, 2013) “Future prostects: Prospecttheory and economics".
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Note 3

Precautionary savings demand

Consider the case of an expected utility maximizer who has to decide how much to save. Sup-pose that there are two periods, and the individual’s utility over consumption in the twoperiods, c1 and C2 , is given by c1 +E [u(C2)], where we assume that c1 is known with certainty,while C2 is a random variable.1 As before, u(c2) represents the utility that the individual wouldderive from knowing that her second-period consumption will be c2 with certainty.Now, suppose that the individual has a fixed income x̄1 in the first period, while in the secondperiod she faces uncertainty and her income is the random variable X2 . In the first period, shecan invest an amount κ , in exchange for an interest rate ι in the future. That is, if she invests κ ,her date-1 consumption is c1 = x̄1 − κ , while it is C2 = X2 + (1+ ι)κ in the second period.
3.1. Savings under certainty
Let us remove all uncertainty from the individual’s problem, by assuming that her second-periodincome is fixed at X̄2 . Then, her decision problem ismax

κ

{
x̄1 − κ + u(X̄2 + (1+ ι)κ)

}
.

Letting k̄ be the optimal investment, the first-order condition it satisfies is that
1 = (1+ ι) · u ′(X̄2 + (1+ ι)k̄).Without specifying a functional form for u, this equation characterizes the individual’s optimalchoice under certainty.

3.2. Precautionary savings
Let us now assume that the individual faces uncertainty about her future income, so that X2 isa random variable with expectation E (X2) = X̄2 and variance σ 2 . If the individual is risk averse,will she necessarily save more than under certainty? In other words, if k∗ is the solution todecision problem max

κ
{x̄1 − κ + E [u (X2 + (1+ ι)κ)]} ,

1 We are simplifying the analysis slightly by assuming that the individual’s intertemporal utility is linear in herfirst-period consumption. Very little changes if her preferences are of the form v(c1) + E [u(C2)].
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and the Bernoulli utility index is concave, is it necessarily the case that k∗ > k̄?If the answer to this question is Yes, then it must be that the derivative of the latter maximandis strictly positive when κ = k̄ , namely that
−1+ (1+ ι)E [u ′(X2 + (1+ ι)k̄)] > 0. (3.1)

As before, we cannot solve this equation without specifying a functional form for u. But we canagain take a second-order approximation of u ′ around X̄2+(1+ ι)k̄ , to get that u ′(X2+(1+ ι)k̄)is approximately equal to
u ′(X̄2 + (1+ ι)k̄) + u ′′(X̄2 + (1+ ι)k̄)(X2 − X̄2) +

1
2u
′′′(X̄2 + (1+ ι)k̄)(X2 − X̄2)2.

Taking expectations,
E [u ′(X2 + (1+ ι)k̄)] ≈ u ′(X̄2 + (1+ ι)k̄) + 1

2σ
2u ′′′(X̄2 + (1+ ι)k̄),

so that Eq. (3.1) becomes
−1+ (1+ ι)u ′(X̄2 + (1+ ι)k̄) + 1+ ι

2 σ 2u ′′′(X̄2 + (1+ ι)k̄) > 0.

Now, the first two terms in this inequality cancel each other, so the required condition becomes
1+ ι
2 σ 2u ′′′(X̄2 + (1+ ι)k̄) > 0.

Note that concavity of u does not suffice for this inequality, for it only is guaranteed to holdwhen u ′′′ > 0. This condition is known as prudence. It does not mean that the individual is riskaverse, but that her coefficient of absolute risk aversion is decreasing.The intuition for this result is simple. Note that the first-order conditions of their respectiveproblems require that
u ′(X̄2 + (1+ ι)k̄) = 1

1+ ι (3.2)
and E [u ′(X2 + (1+ ι)k∗)] = 1

1+ ι . (3.3)
When u ′′′ > 0, the marginal utility function u ′ is convex, as in Fig. 3.1. Risk around X̄2 means,then, that E [u ′(X2 + (1+ ι)k̄)] > u ′(X̄2 + (1+ ι)k̄).This means that k̄ is not optimal under risk, and the individual will choose k∗ > k̄ , in order tolower E [u ′] to 1/(1+ ι) again. Notice, by the same reason, that if the marginal utility function islinear no adjustment is necessary, while if it is concave the adjustment required is to decreasethe level of savings.
Example 3.1. Suppose that u(x) = ln(x). Compare k̄ and k∗. How do you make sense of thisresult?
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-
x

6
u ′(x)

Figure 3.1: Prudence: u ′, when u ′′′ > 0.
Answer: With u ′(x) = 1/x , and Eq (3.2) becomes

1 = 1+ ι
X̄2 + (1+ ι)k̄

, (∗)
while Eq. (3.3) is

1 = E [ 1+ ι
X2 + (1+ ι)k∗

] (∗∗)
in this particular case. The graph of u ′(x) is a parabola like the one that appears in Fig. 3.1. Itfollows from that graph that, for any k ,

u ′(E [X2] + (1+ ι)k) < E [u ′(X2 + (1+ ι)k)]

From comparing Eqs. (∗) and (∗∗), it then follows that k̄ < k∗. This is not surprising, as thisindividual’s marginal utility function is convex, so the agent is prudent. In the presence of risk,this agent does demand strictly positive precautionary savings. �

Exercise 3.1. Suppose that u(x) = −(S − x)2 , for a (very large) positive constant S .2 Compare
k̄ and k∗. How do you make sense of this result?
Exercise 3.2. Suppose that u(x) = α + βx , for a positive constant β .3 Compare k̄ and k∗. Howdo you make sense of this result?
Exercise 3.3. In the context of a two-period savings problem, suppose that the individual hasa fixed income x̄ in both periods. In the first period, she can invest an amount k , in exchangefor an interest rate I in the future, where I is a random variable with expectation Ī > 0 andvariance Σ > 0. The individual’s utility over consumption in the two periods, c1 and C2 , is givenby c1 + E [u(C2)] , where u is a strictly increasing and strictly concave cardinal utility index.

2 Suppose that S is large enough that the inequality C2 < S can be taken for granted. This consumption levelconstitutes a “satiation point.”3 The sign of α does not matter.
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a. Assuming that the interest rate is fixed at Ī , find a condition that characterizes her optimallevel of savings, k̄ .
b. Now, allowing for uncertainty on the interest rate, find a condition that characterizes heroptimal level of savings, k∗.
c. Assuming now that (over the relevant domain) the individual’s marginal utility is (positive,decreasing and) linear, compare k̄ and k∗. How do you make sense of this result?
Reading. The following excerpt is from an article in The Economist. Discuss it critically.

Most people save to insure themselves
against income and life shocks, for
their children’s education, and for their
retirement. How much you actually
save for these uses depends on your
income, level of risk aversion, and how
risky you perceive your environment to
be. Were the Chinese less risk averse
than Americans, they might still save
more based on perceptions of the rel-
ative likelihood of income and other fi-
nancial shocks. The Great Moderation
in America produced a long period of
low consumption volatility. Americans
may have come to believe that such
placidity would persist in the future,
leading even the most risk averse to
reduce saving.
Given this, the most effective fiscal
policy for China might be the construc-
tion of a better welfare state. But

would that cause the Chinese to spend
like Americans? An individual’s level
of risk aversion should stay relatively
constant, but how that person cali-
brates risk may change. The question
is, are the Chinese more risk averse
or do they simply face greater uncer-
tainty?
... Arguably, Asian and white Amer-
icans face the same economy-wide
risks. The evidence then suggests
that Asian Americans have greater in-
nate levels of risk aversion. One other
possibility — the survey cited above
does not indicate how long a partic-
ular family has lived in America. The
Asian-American families in the survey
could then be calibrating risk based
on perceptions ingrained by immigrant
relatives or by surrounding immigrant
communities.

From: Free exchange, The Economist, Economics (December 19th, 2008) “Are the Chinese nervousor thrifty?”
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Note 4

Production decisions under uncertainty

Consider now the case of a producer who needs to decide an output level. Her firm faces un-certainty about the price she will receive. Formally, suppose that the cost of producing qunits is c(q), so that the profits she makes if she produces that much are the random variable
Π = P · q− c(q), where p denotes the price the producer receives. As is usual in economics, weassume that the marginal cost is positive and increasing, so that c ′(q) > 0 and c ′′(q) > 0 at alloutput levels.Now, the price is not chosen by the producer (who is then said to be competitive) and is arandom variable with expectation P̄ and variance σ 2 . The question we want to study first is howthis risk affects the profit-maximizing output decisions of the individual.As before, we assume that the producer has EU preferences over profits, with Bernoulliutility index u, which is assumed to be increasing. Also, we will assume that the individual isrisk-averse, so we take u to be concave.
4.1. Output under certainty
Suppose that all uncertainty is removed, so that the price is fixed at P̄ . Then, the optimal outputlevel is given simply by q̄ such that c ′(q̄) = P̄ .
4.2. Output under uncertainty
Now, under uncertainty, the optimal output level q∗ solves the problem

max
q

E [u (P · q− c(q))] .

The question is whether the assumption that the individual is risk averse implies that q∗ ≤ q̄.The first-order condition that characterizes the optimal output level is that
E {u ′ (P · q∗ − c(q∗)) [P − c ′(q∗)]} = 0,

which we can re-write as
E [u ′(Π∗)(P − P̄)] = E [u ′(Π∗)][c ′(q∗) − P̄]. (4.1)
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where Π∗ = P · q∗ − c(q∗). Assuming that q∗ > 0, note that, since u is concave,
P > P̄ ⇒ Π∗ > E (Π∗)⇒ u ′(Π∗) ≤ u ′ (E (Π∗)) ,

while
P < P̄ ⇒ Π∗ < E (Π∗)⇒ u ′(Π∗) ≥ u ′ (E (Π∗)) .We can express these implications as

(P − P̄)[u ′(Π∗) − u ′ (E (Π∗))] ≤ 0,

and then, taking expectations,
E {(P − P̄) [u ′(Π∗) − u ′ (E (Π∗))]

}
≤ 0.

But the latter inequality implies that
E [(P − P̄)u ′(Π∗)

]
≤ E [(P − P̄)u ′ (E (Π∗))

]
= 0,

so, from Eq. (4.1), E [u ′(Π∗)][c ′(q∗) − P̄] ≤ 0. Now, since index u is increasing, it must be that
c ′(q∗) ≤ P̄ = c ′(q̄), and hence that q∗ ≤ q̄, as we anticipated.
Example 4.1. Suppose that the total cost of producing q units is c(q) = 1

2q
2 , and that the produceris an EU maximizer, with Bernoulli utility index u(x) = log(α + x), for some constant α > 0.

a. Suppose initially that the price is known to be P̄ > 0 per unit. Find the optimal output level,
q̄, and resulting profit.

b. Suppose now that the price the individual face, P , is a random variable and can be 0 or
2P̄ with probability 0.5. Write the first-order condition that characterizes the optimal outputlevel, q∗. Do you expect q∗ to be smaller than q̄? Why, or why not?

c. Suppose, in particular, that α = 5/8 and P̄ = 1. Argue that q∗ = 1/2, by showing that thisvalue satisfies the first-order condition found in the previous part. Find q̄, and compare it to
q∗. Is your intuition of the previous part confirmed?

d. Maintaining the assumption that α = 5/8 and P̄ = 1, find the distribution of the maximumprofits, Π∗, that the individual will receive. Suppose that someone offers her a future contract,that locks her price at P̄ . Write an equation that characterizes the maximum value that shewould be willing to pay for this future.
Answer: a. Under certainty, the producer will simply maximize her profit, by choosing q̄ thatsolves program max

q

{
P̄q− 1

2q
2
}
.

The first-order conditions of this program give us immediately that q̄ = P̄ .
A. Carvajal



Output under uncertainty 29
b. With this distribution of prices, she will choose q∗ that solves

max
q

{
1
2 log(α − 1

2q
2) + 1

2 log(α + 2P̄q− 1
2q

2)
}
.

The first-order condition that characterizes Q∗ is that
−q∗

α − 1
2 (q∗)2

+
2P̄ − q∗

α + 2P̄q∗ − 1
2 (q∗)2

= 0. (∗)
(Admittedly, this equation is pretty hard to solve.) Since this producer is risk averse, andsince P̄ = E [P], the theory tells us that q∗ ≤ q̄.

c. Under these values, Condition (∗) becomes
−q∗

5
8 −

1
2 (q∗)2

+
2 − q∗

5
8 + 2q∗ −

1
2 (q∗)2

= 0. (∗∗)
If we substitute q∗ = 1/2, the left-hand side of (∗∗) becomes

− 1
2

5
8 −

1
2 ·

1
4
+

2 − 1
2

5
8 + 1−

1
2 ·

1
4
= −

1
2
1
2
+

3
2
3
2
= 0.

Under certainty, in this case we would have q̄ = 1, so q̄ > q∗, as expected.
d. By direct substitution, maximized profits are π∗ = −1/8 or π∗ = 7/8 with equal probabilities.If she took the future contract, her net profit would be

P̄q− 1
2q

2 − Γ,

with probability 1. The optimal level of production would then be the same as in part 1, sincesubtracting a constant doesn’t change the optimal level of output. From part 1, then, we havethat gross profits will be π̄ = 1/2 with probability 1. The maximum she would be willing topay for the future contract would be Γ such that
log(α + 1

2 − Γ ) =
1
2 log(α − 1

8 ) +
1
2 log(α + 7

8 ).We should expect Γ > 0.1 �

Exercise 4.1. Suppose that the total cost of producing q units is c(q) = 1
2q

2 , and that theproducer is an expected-utility maximizer, with cardinal utility index u(x) =
√
A + x , where

A > 0 is very large.a. Suppose initially that the price is known to be P̄ > 0 per unit. Find the optimal output level,
q̄, and resulting profit.b. Suppose now that the price the individual face, P , is a random variable and can be 0 or
2P̄ with probability 0.5. Write the first-order condition that characterizes the optimal outputlevel, q∗. Do you expect q∗ to be smaller than q̄? Why, or why not?
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c. Suppose that someone offers her a future contract that locks her price at P̄ . Write an equationthat characterizes the maximum value that she would be willing to pay for this future.
Exercise 4.2. Consider the problem of deciding optimal production levels under cost uncertainty.The price is p > 0 per unit, but the total cost of producing q units is 1

2Cq
2 , where C is arandom variable with expectation C̄ > 0 and variance Σ . The producer is an EU maximizer withBernoulli utility index u(x) = log(α + x), for some constant α > 0.

a. Suppose initially that the cost is known to be 1
2 C̄q

2 > 0 per unit. Find the optimal outputlevel, q̄, and resulting profit.
b. Suppose now that C can be 0 or 2p with equal probability, 0.5. Write the first-order conditionthat characterizes the optimal output level, q∗. Do you expect q∗ to be smaller than q̄? Why,or why not?
c. Suppose, in particular, that α = 4/5 and p = 1. Argue that q∗ = 4/5, by showing that thisvalue satisfies the first-order condition found in the previous part. Find q̄, and compare it to
q∗. Is your intuition of the previous part confirmed?

4.3. The effects of sunk costs
Suppose now that the cost function of the firm includes a sunk cost, c̄, that we now isolate fromits variable costs. The problem is, thus, re-written as maxQ[u (P · Q − C(Q) − c̄)]. It is easyto see that, in the absence of uncertainty, the optimal level of production is independent of c̄:dQ̄/ dc̄ = 0. We now want to show that this independence fails when there is price risk. Inparticular, we want to observe that if the firm exhibits decreasing coefficient of absolute riskaversion, then dQ∗/ dc̄ < 0.Note that, for a given c̄, the first-order condition for optimality of Q∗ is

E {u ′(π∗)[P − C ′(Q∗)]} = 0, (∗∗)
where π∗ = P · Q∗ − C(Q∗) − c̄. If we differentiate this expression totally, we can solve fordQ∗dc̄ =

E {u ′′(π∗)[P − C ′(Q∗)]}E {u ′′(π∗)[P − C ′(Q∗)]2}− E [u ′(π∗)]C ′′(Q∗) .Since the Bernoulli utility index is increasing and concave, and the cost function is strictly convex,the denominator of this expression is a negative number. For our claim, then, it suffices that weshow that the numerator is a positive number.Now, define P̃ = C ′(Q∗), π̃ = P̃ ·Q∗−C(Q∗)− c̄, and Ã = A(π̃). Then, assuming that Q∗ > 0,
P > P̃ ⇒ π∗ > π̃ ⇒ A(π∗) < Ã,

while
P < P̃ ⇒ π∗ < π̃ ⇒ A(π∗) > Ã.We can express these implications as (P − P̃)[A(π∗) − Ã] < 0, which means that

−[P − C ′(Q∗)][A(π∗) − Ã]u ′(π∗) > 0,
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or, equivalently,

−A(π∗)u ′(π∗)[P − C ′(Q∗)] > −Ã · u ′(π∗)[P − C ′(Q∗)].If we take expectations of the last expression,
E {u ′′(π∗)[P − C ′(Q∗)]} = −E {A(π∗)u ′(π∗)[P − C ′(Q∗)]} > −Ã · E {u ′(π∗)[P − C ′(Q∗)]} = 0,

using (∗∗), as we needed.
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Note 5

Stochastic dominance

We now want to study “monotonicity” properties for lotteries. We need a new frameworkfor this, as it would be a mistake to pretend that we can order lotteries using the standard‘greater-than’ relation. For simplicity, let us consider the case of lotteries that pay in nonnegativeunits of some numéraire (money), so that we represent them by the probabilities they assign toany nonnegative number x : a lottery will be a c.d.f. F : R+ → [0, 1].1
5.1. First order
We say that lottery F is as large as lottery F̃ in the first-order stochastic sense if F (x) ≤ F̃ (x)for every every possible payoff level x . F is said to first-order stochastically dominate F̃ if it isas large, and the above inequality is strict at some payoff level. For simplicity, we will write that
F ≥1 F̃ if F is as large as F̃ in the sense of first-order stochastic dominance, and that F >1 F̃if F dominates F̃ in the same sense.This is an intuitive concept: by definition, both F and F̃ are nondecreasing, so saying that
F ≥1 F̃ means that, at any point, F leaves at least as much probability to be allocated to higherpayoffs as F̃ .
Example 5.1. Consider an EU maximizer, who is presented with the following two lotteries:1. in lottery F1, she gets an amount x1 with probability 1/3, 2x1 with probability 1/3 or 3x1with probability 1/3;

2. in lottery F2 , she gets an amount x2 with probability 1/3, 2x2 with probability 1/3 or 3x2with probability 1/3.Argue that if x2 > x1, then F2 >1 F1. What lottery does this decision-maker prefer? Does thisanswer depend on the person’s specific Bernoulli index?
Answer: The cdf’s of the two lotteries are as in Fig. 5.1. From there, it is immediate that L2 >1 L1.As long as the individual prefers more wealth to less, namely that u ′ > 0, she prefers L2 . Thisis independent of u, as long as we restrict attention to increasing indices. �

1 If a lottery F has a density function, we will denote this function by f : R+ → R+.
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Figure 5.1: The lotteries of Example 5.1.
For any decision maker with EU preferences, if she prefers more wealth to less, then shealso ranks lotteries according to first-order stochastic dominance. The following propositionformalizes this observation.Proposition 5.1. Given two lotteries, F and F̃ :

1. if F >1 F̃ , then E F (u) > E F̃ (u) for any increasing utility index u; and

2. if F , F̃ and it is not true that F >1 F̃ , then for some increasing utility index u one has
that E F (u) < E F̃ (u).

Proof. For simplicity of presentation, we consider here only the case of a discrete random variablegiving positive probability only to some integer numbers, and defer the more general case to anappendix. That is, let us assume that F and F̃ give positive probability only to payoffs in theset {0, 1, . . . , x̄}, for some positive integer x̄ . For the first statement, by definition,
E F (u) − E F̃ (u) =

x̄∑
x=0

u(x)[F (x) − F (x − 1)] −
x̄∑
x=0

u(x)[F̃ (x) − F̃ (x − 1)],

with F (−1) = F̃ (−1) = 0. Rearranging terms,2 the right-hand side of this expression is
u(x̄)[F (x̄) − F̃ (x̄)] − u(0)[F (−1) − F̃ (−1)] +

x̄∑
x=1

[u(x) − u(x − 1)][F̃ (x − 1) − F (x − 1)].

Since F (x̄) = F̃ (x̄) and F (−1) = F̃ (−1), this expression becomes, simply,
x̄∑
x=1

[u(x) − u(x − 1)][F̃ (x − 1) − F (x − 1)].

2 Note that for any functions υ : {1, . . . , I}→ R and Φ : {0, 1, . . . I}→ R, if one defines ∆Φ(i) = Φ(i) − Φ(i − 1)for each i = 1, . . . , I , then
I∑
i=1

υ(i)∆Φ(i) = υ(I)Φ(I) − υ(1)Φ(0) −
I∑
i=2

[υ(i) − υ(i− 1)]Φ(i− 1).

This is the analogous expression, for sums, of integration by parts.
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And since u is increasing and F >1 F̃ , this expression is a strictly positive number.For the second statement, since F , F̃ and it is not true that F >1 F̃ , it must be that forsome income level x∗, it is true that F (x∗) > F̃ (x∗). Fix one such x∗, and construct the following(nondecreasing) function: v(x) = 0 for any x ≤ x∗, and v(x) = 1 for all x > x∗. Then, forany cummulative distribution function, F̂ , by definition, E F̂ (v) = 1 − F̂ (x∗), so it follows thatE F̃ (v) > E F (v). Since this inequality is strict, we can modify v to construct an increasing index
u for which the inequality holds too. �The following examples provide useful properties of the first-order stochastic dominancerelations.
Example 5.2. Argue that relations ≥1 and >1 are transitive.
Answer: Fix lotteries F , F̃ and F̂ such that F ≥1 F̃ and F̃ ≥1 F̂ . Then, for any value of x ,
F (x) ≤ F̃ (x) and F̃ (x) ≤ F̂ (x). This implies that F (x) ≤ F̂ (x) for all values of x , and hence that
F ≥1 F̂ . For >1, the argument is similar, observing that if F >1 F̃ abd F̃ >1 F̂ , then F , F̂ . �

Abusing notation slightly, we will say that a random variable dominates another, in thesenses described here, if the distribution of the former dominates the distribution of the latter inthe given sense. With this language, we can more easily express the following properties.
Example 5.3 (Difficult!). Suppose that X , Y and Z are independent random variables. Argue that

a. if Y ≥1 Z , then αX + (1− α)Y ≥1 αX + (1− α)Z for any α ∈ [0, 1]; and

b. if Y >1 Z , then αX + (1− α)Y >1 αX + (1− α)Z for any α ∈ [0, 1).

Answer: For the first property, let F , G and H be, respectively, the distributions of X , Y and Z .Note that
Pr[αX + (1− α)Y ≤ v ] =

∫∞
−∞ Pr(Y ≤ v − αx

1− α

∣∣∣∣X = x
) dF (x)

=

∫∞
−∞ Pr(Y ≤ v − αx

1− α

) dF (x)
=

∫∞
−∞G

(
v − αx
1− α

) dF (x),
where we used the assumption that X and Y are independent in the second equality. By anidentical argument,

Pr[αX + (1− α)Z ≤ v ] =
∫∞
−∞H

(
v − αx
1− α

) dF (x).
Since Y ≥1 Z , we know that H(x) ≥ G(x) at all x , so∫∞

−∞G
(
v − αx
1− α

) dF (x) ≤ ∫∞
−∞H

(
v − αx
1− α

) dF (x),
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which means that Pr[αX + (1− α)Y ≤ v ] ≤ Pr[αX + (1− α)Z ≤ v ].Since this is true for all v , the result follows. The second property is argued in a similar way. �
The following result is very natural:Exercise 5.1. Consider two lotteries F and F̃ . Argue that if F >1 F̃ , then E F (X ) > E F̃ (X ).

5.2. Second order
First-order stochastic dominance can sometimes be too strong as a concept of dominance forlotteries. A second, weaker concept is given by the following definition. A lottery F is as large
as lottery F̃ in the second-order stochastic sense if∫ x

0
F (s) ds ≤ ∫ x

0
F̃ (s) ds

for every every possible payoff level x . F is said to second-order stochastically dominate F̃ if itis as large, and the above inequality is strict at some payoff level. As before, we will use F ≥2 F̃and F >2 F̃ to denote stochastic dominance in the second-order sense.It is immediate that first-order stochastic dominance implies second-order stochastic domi-nance, but the converse is not true. What the second concept captures is the difference in the“speeds” at which different lotteries accrue probability over ‘low’ payoffs. The following proposi-tion illustrates the importance of this concept; the proposition is stated without some technicalassumptions, which are deferred to the proof given in the appendix.Proposition 5.2. Given two lotteries F and F̃ :
1. if F >2 F̃ , then E F (u) > E F̃ (u) for any increasing and strictly concave utility index u; and

2. if F , F̃ and it is not true that F >2 F̃ , then for some increasing and strictly concave
utility index u one has that E F (u) < E F̃ (u).

Proof. As before, we can illustrate this result in the discrete case considered in Proposition 5.1.In this case, since the domain of u is not convex, we replace the assumption of concavity of theindex by the condition that [u(x) − u(x − 1)] − [u(x − 1) − u(x − 2)] < 0 for every x = 2, . . . , x̄ .This is the discrete analogous of the requirement that the second derivative of the function benegative. In this setting, suppose that F >2 F̃ , and recall from the proof of Proposition 5.1 that
E F (u) − E F̃ (u) =

x̄+1∑
x=1

[u(x) − u(x − 1)][F̃ (x − 1) − F (x − 1)].

Rewriting this expression, as before, we get that its right-hand side equals3
−

x̄+1∑
x=2

{
[u(x) − 2u(x − 1) + u(x − 2)]

x−2∑
s=0

[F̃ (s) − F (s)]
}
.

3 The term [u(x̄ + 1) − u(x̄)][F̃ (x̄) − F (x̄)] − [u(1) − u(0)][F̃ (0) − F (0)], which also appears in the expression,disappears since F̃ (x̄) = F (x̄) and F̃ (0) = F (0).
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Since, by assumption, each u(x) − 2u(x − 1) + u(x − 2) < 0 and each ∑x−2

s=0(F̃ (s) − F (s)) ≤ 0,with strict inequality somewhere, it follows that E F (u) > E F̃ (u). �Exercise 5.2. An oil company, Pritish Betroleum, henceforth PB, has been found guilty of causinga major environmental disaster, and the court has decided that it has to pay an amount X inpunitive damages. The exact amount of X will be determined after an assessment of the damages,which will be undertaken by one of two environmental laboratories, a or b. Under laboratory i,the probability distribution for X is Fi.4Assume that PB is an EU maximizer and that its Bernoulli utility index is increasing in thecompany’s wealth.a. Suppose that Fa ≥1 Fb and that the court allows PB to choose which laboratory to use forthe assessment of damages. Which one should they choose?
b. Suppose now that Fa is the uniform distribution over some interval [x∗, x∗], while Fb is theuniform distribution over [x∗ − 1, x∗ + 1]. Argue that Fa >2 Fb.c. Under the same assumptions as in part 2, suppose that the court allows PB to choose whichlaboratory to use for the assessment of damages. Which one should they choose?Exercise 5.3. Let U[a, b] denote the uniform distribution over the interval [a, b]. In the context oflotteries that pay in non-negative amounts of wealth, let L1 = U[1, 2], L2 = U[1, 3], L3 = U[2, 4],
L4 = U[2.5, 3.5], L5 = U[3, 3], and L6 = U[3, 4].a. Draw the distributions of the lotteries, and use their graphs to compare them, wheneverpossible, according to first- and second-order stochastic dominance.
b. Suppose that %A are the preferences of a strictly risk-averse individual. Rank the lotteriesaccording to this individual’s preferences.
c. Suppose that %N are the preferences of a risk-neutral individual. Rank the lotteries accordingto this individual’s preferences.
d. Suppose that %L are the preferences of a risk-loving individual. Rank the lotteries accordingto this individual’s preferences.The nice properties of first-order stochastic dominance also hold in this case:Exercise 5.4. Argue that relations ≥2 and >2 are transitive.Exercise 5.5. Suppose that X , Y and Z are independent random variables. Argue that:a. if Y ≥2 Z , then αX + (1− α)Y ≥2 αX + (1− α)Z for any α ∈ [0, 1]; and
b. if Y >2 Z , then αX + (1− α)Y >2 αX + (1− α)Z for any α ∈ [0, 1).In order to understand what second-order dominance captures, the following result is useful.Intuitively, under the premises of the proposition, lottery F̃ takes probability mass from the“center” of the distribution (i.e. near the mean) and allocates it to both of its extremes; for arisk-averse decision-maker, this makes the lottery worse. Under those premises, F̃ is said to bea mean-preserving spread of F .

4 You can assume that Fa and Fb are continuous.
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Example 5.4. Consider two continuous lotteries F and F̃ , with densities f and f̃ , that assign allthe probability mass over the interval [0, x̄], and suppose that E F (X ) = E F̃ (X ). Argue that if
F >2 F̃ , then VF (X ) < VF̃ (X ).
Answer: Integrating by parts,

VF [X ] − VF̃ [X ] = x2[F (x) − F̃ (x)]
∣∣∣∣x̄
0
−

∫ x̄
0
2x[F (x) − F̃ (x)] dx.

The first summand on the right-hand side of the expression is zero, since E F [X ] = E F̃ [X ],5Integration by parts of the second term gives
−2
(
x
∫ x
0
[F (s) − F̃ (s)] ds) ∣∣∣∣x̄

0
+ 2
∫ x̄
0

∫ x
0
[F (s) − F̃ (s)] ds dx.

The first term in this latter expression is simply −2x̄
∫x̄
0 [F (s) − F̃ (s)] ds which, again, is nullsince both lotteries have the same mean. The second term is is negative, since F >2 F̃ . �

Appendix
We now give a more formal presentation of the results in stochastic dominance. We start by giving aversion of Proposition 5.1 for continuous lotteries, and its proof.
Proposition. Consider two lotteries, F and F̃ , with densities f and f̃ .

1. If F >1 F̃ , then, for any increasing and bounded utility index u ∈ C1, E F [u(X )] > E F̃ [u(X )].

2. Conversely, if F , F̃ and it is not true that F >1 F̃ , then for some increasing and bounded utility
index u ∈ C1 one has that E F [u(X )] < E F̃ [u(X )].

Proof. For the first statement, integrating by parts and since u is continuously differentiable,
E F [u(X )] − E F̃ [u(x)] =

∫∞
0
u(x)[f (x) − f̃ (x)] dx = u(x)[F (x) − F̃ (x)]

∣∣∣∣∞
0
−

∫∞
0
u ′(x)[F (x) − F̃ (x)] dx.

Since F (0) = F̃ (0) = 0 (remember that these c.d.f. have density) and limx→∞ F (x) = limx→∞ F̃ (x) = 1,and since u is bounded, it follows that u(x)[F (x)− F̃ (x)]|∞0 = 0. Since u ′ > 0 and F >1 F̃ , we have that6∫∞
0 u

′(x)[F (x) − F̃ (x)] dx < 0, so EF [u(X )] − E F̃ [u(x)] > 0.For the second statement, we shall consider two c.d.f. that “cross,” so that none of them dominatesthe other: fix x∗ such that F (x) ≥ F̃ (x) for all x ≤ x∗, with strict inequality somewhere, and F (x) ≤ F̃ (x)for all x ≥ x∗. Define the index υp, for each positive real number p, by
υp(x) =

{
p exp( x−x∗p ), if x ≤ x∗;
p+ 1

p {1− exp[−p(x − x∗)]}, if x > x∗.
6 Remember that any c.d.f. is right-continuous.
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By construction, this function is differentiable and monotone, with

υ ′p(x) =
{ exp( x−x∗p ), if x ≤ x∗;exp(− x−x∗

p ), if x ≥ x∗.
The function is also bounded, with limx→∞ υp(x) = p. Now, recalling the equation above, we have thatE F [u(X )] − E F̃ [u(x)] = −

∫∞
0 u

′(x)[F (x) − F̃ (x)] dx , and the right-hand side of this expression is, bydirect substitution,
−

∫ x∗
0

exp(x − x∗p

)
[F (x) − F̃ (x)] dx − ∫∞

x∗
exp(−x − x∗p

)
[F (x) − F̃ (x)] dx,

an expression that is ambiguous, in general, by our assumptions. However, since for and x ≤ x∗ the termexp[(x − x∗)/p] is increasing in p, while for any x ≤ x∗ the term exp[−(x − x∗)/p] is decreasing in p, itfollows that for p large enough the first term dominates and the whole expression is negative. �

The result for second-order dominance requires some technical assumptions too:
Proposition. Let F and F̃ be two continuous lotteries, with densities f and f̃ . Suppose that both lotteries
have finite mean.

1. If F >2 F̃ , then for any increasing, bounded and strictly concave utility index u ∈ C1, we have thatE F [u(X )] > E F̃ [u(X )].

2. Conversely, if F , F̃ and it is not true that F >2 F̃ , then for some increasing, bounded and strictly
concave utility index u ∈ C1 one has that E F [u(X )] < E F̃ [u(X )].

Proof. For the first statement, let us recall again that E F [u(X )]−E F̃ [u(x)] = −
∫∞
0 u

′(x)[F (x)− F̃ (x)] dx .By integration by parts again, the right-hand side of the expression is
−

(
u ′(x)

∫ x
0
[F (s) − F̃ (s)] ds) ∣∣∣∣∞

0
+

∫∞
0

(
u ′′(x)

∫ x
0
[F (s) − F̃ (s)] ds) dx.

By concavity and boundedness, limx→∞ u ′(x) = 0, while ∫∞0 [F (s) − F̃ (s)] ds ∈ R, since both lotterieshave mean, so the first term on this expression vanishes. The second term is positive, since u ′′ < 0 and
F >2 F̃ .The proof of the second statement is similar to its analogous in the extension of Proposition 5.1 above,using the expression we just obtained, and considering the utility indices

υp(x) = −
1
p2 exp[−p(x − x∗)],

for p > 0. Details are omitted. �
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Note 6

Portfolio theory

Consider a strictly risk-averse individual who derives utility from future consumption. Shehas a present wealth w that she is to allocate between two assets: a riskless asset,with return ρ > 0; and an asset whose return is R + ρ, for a random variable R that follows adistribution F , with expectation R̄ > 0 and density f .Denoting by k the amount the individual invests in the risky asset, her problem is
max
k∈[0,w]

E [u ((w − k)ρ + k(R + ρ))] = max
k∈[0,w]

E [u(wρ + kR)].

The first-order condition for an interior solution k∗ is that E [u ′(wρ + k∗R)R ] = 0, which isnecessary and sufficient given that the individual is strictly risk averse.1The purpose of this section is to study the response of the optimal level of investment in therisky asset to changes in the distribution of its return. In general, one can capture perturbationsto this distribution that affect it in the sense of first- or second-order stochastic dominance. Here,for simplicity, we will concentrate in some specific types of perturbations.
6.1. First-order, simple perturbations
Suppose now that the return of the risky asset is R + ρ + θ , where θ > −E (R) is a constant,and R is distributed as before.2 Note that higher values of θ amount to first-order stochasticimprovements in the return of this asset.The portfolio problem now is

max
k∈[0,w]

E [u (wρ + k(R + θ))] .

We denote the optimal investment in the risky asset by k(θ), and restrict attention to values of
θ (and other parameters) for which this solution is interior.
Proposition 6.1. If the investor has a decreasing coefficient of absolute risk aversion, the optimal
investment in the risky asset is increasing in θ.

1 The fact that E (R) > 0 guarantees that k∗ > 0. We assume also that k∗ < w , for simplicity.2 We also assume that F (−θ) > 0, for interiority of the solution.
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In order to argue the proposition, we need to show that k ′(θ) > 0. By the first-ordercondition, E [u ′ (wρ + k(θ)(R + θ)) (R + θ)] = 0.Differentiating with respect to θ gives3
k ′(θ) = −

E [u ′′(·)k(θ)(R + θ) + u ′(·)]E [u ′′(·)(R + θ)2] .

Since the denominator of this expression is negative, it suffices for our purposes to prove thatits numerator is positive.Using the definition of the coefficient of absolute risk aversion, A, we can rewrite the numer-ator as E [u ′(·)] − E [u ′(·)A(·)k(θ)(R + θ)].The first of these terms is positive and k(θ) > 0, so it suffices to show that
E [u ′(·)A(·)(R + θ)] ≤ 0.

Note that we can write this expectation as4∫−θ
−∞ u

′(·)A(·)(r + θ)f (r) dr + ∫∞
−θ
u ′(·)A(·)(r + θ)f (r) dr.

Since A is positive and decreasing, it is immediate that∫−θ
−∞ u

′(·)A(·)(r + θ)f (r) dr ≤ A(wρ) ∫−θ
−∞ u

′(·)(r + θ)f (r) dr.
while ∫∞

−θ
u ′(·)A(·)(r + θ)f (r) dr ≤ A(wρ) ∫∞

−θ
u ′(·)(r + θ)f (r) dr

The sum of these two inequalities yields
E [u ′(·)A(·)(R + θ)] ≤ A(wρ)

∫∞
−∞ u

′(·)(r + θ)f (r) dr
= A(wρ)E [u ′(·)(R + θ)]
= 0,

where the last equality comes from the first-order condition of the utility maximization problem.
Example 6.1. In the context of this section, suppose that u(x) = ln(x), w > 0, ρ = 1, and that Rcan be either −1 or 2, with equal probability. Restricting attention to θ ∈ (−1/2, 1), find k(θ)and argue that k ′(0) > 0.

3 In the following expressions, · is used to denote the argument of the different functions, which is the randomvariable wρ + k(θ)(R + θ).4 In the following, integrals, the argument of the functions u ′ and A is wρ + k(θ)(r + θ), but we substitute itfor ·, for simplicity of the expressions.
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Answer: The portfolio problem is

max
k

{ 1
2 ln[w + (θ + 2)k ] + 1

2 ln[w + (θ − 1)k ]
}
.

Its first-order condition for the optimum is that
θ + 2

w + (θ + 2)k +
θ − 1

w + (θ − 1)k = 0.

By direct computation,
k(θ) = (1+ 2θ)w

2(2 + θ)(1− θ) .This function is increasing, as its derivative is proportional to
5 + 2θ + 2θ2 > 0.

The result is intuitive, as a higher premium implies a first-order stochastic improvement inthe project and the agent has decreasing absolute risk aversion. �

The following exercise shows that the we cannot dispense with the assumption that thecoefficient of absolute risk aversion of the investor is decreasing.
Exercise 6.1. In the context of this section, suppose that the investor has quadratic preferences,so that her marginal utility is a linear function u ′(x) = S + µx , where µ < 0 and S > −µ areconstant. In this case, a first order improvement in the return of the risky asset need not increasethe investor’s optimal level of investment in it: function k need not be increasing in θ .Argue the following steps, which together yield a proof of this claim. For simplicity, supposethat ρ = w = 1.
a. The optimal demand is

k(θ) = −
(S + µ)(E [R ] + θ)
µE [(R + θ)2] .

b. k ′(θ) equals
µ(S + µ) {2(E [R ] + θ)2 − E [(R + θ)2]}

µ2E [(R + θ)2]2 .

c. k ′(0) > 0 only if V(R) > E [R ]2 .
6.2. Second-order perturbations: mean-preserving spreads
Maintaining the notation and assumptions introduced so far, let us now assume that the returnof the risky asset is ρ + αR + (1 − α)E (R), for a constant number α ∈ [0, 1]. As before, wedenote the investor’s optimal level of investment in the risky asset as

k(α) = argmax
k∈[0,w]

E {u (wρ + k [αR + (1− α)E (R)])} ,
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which we assume to be interior.Note that a higher value of α represents a mean-preserving spread in the return of therisky asset, so that we can use a decrease in α to model a (simple) second-order stochasticimprovement in this return.
Exercise 6.2. Suppose that the investor has quadratic preferences, so that her u ′′ is a constant,
µ < 0. In this case, a second-order improvement in the return of the risky asset increases theinvestor’s optimal level of investment in it: function k is decreasing in α .Argue each of the following steps, which together yield a proof of the statement.
a. The first-order condition of the investor is that

E {u ′ (wρ + k(α)[αR + (1− α)E (R)]) [αR + (1− α)E (R)]} = 0.

b. k ′(α) equals
−

E {u ′′(·)k(α)[R − E (R)][αR + (1− α)E (R)] + u ′(·)[R − E (R)]}E {u ′′(·)[αR + (1− α)E (R)]2} .

c. The denominator of the previous expression is negative.
d. The numerator of the expression can be rewritten as

αk(α)µV(R) + Cov [u ′(·), R ]. (∗)
e. The first summand of this last expression is negative, and the second non-positive.
f. Expression (∗) is negative and k ′(·) < 0.
6.3. Diversification and stochastic dominance
Consider now the problem of an investor who has to choose between risky assets. Let X1 and
X2 be i.i.d. non-degenerate random variables.5 Let the common distribution of these variablesbe F .Suppose first that the investor has access to only these two assets, and has to choose theproportion α that she invests in X1, while the remainder (1 − α) is invested in X2 . Our firstresult is that for any risk averse individual, any degree of diversification is strictly better thanno diversification at all.
Proposition 6.2 (Samuelson). For any α ∈ (0, 1), portfolio αX1+(1−α)X2 second-order stochas-
tically dominates assets X1 and X2 .

5 That they are independent means that, for any (x1, x2), Pr(X1 ≤ x1, X2 ≤ x2) = Pr(X1 ≤ x1) × Pr(X2 ≤ x2).They are identically distributed in the sense that for all x , Pr(X1 ≤ x) = Pr(X2 ≤ x). They are non degenerate inthe sense that for some x , 0 < Pr(X1 ≤ x) < 1.
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To see why this proposition is true, just consider a strictly risk-averse individual whoseBernoulli index is u. Note that

E [u (αX1 + (1− α)X2)] =
∫ ∫
u[αx1 + (1− α)x2] dF (x1) dF (x2)

>
∫ ∫

[αu(x1) + (1− α)u(x2)] dF (x1) dF (x2),
where we used the fact that u is strictly concave and the random variables are independent andnon-degenerate. Now,∫ ∫

[αu(x1) + (1− α)u(x2)] dF (x1) dF (x2) = α
∫
u(x1) dF (x1) + (1− α)

∫
u(x2) dF (x2)

=

∫
u(x1) dF (x1)

= E [u(X1)].

Since, then, the inequality
E [u (αX1 + (1− α)X2)] > E [u(X1)]

holds true for all strictly concave indices u, the claim follows from Proposition 5.2.A more surprising result is the following. Let Y be another asset that is independent from
X1 and X2 but second-order stochastically dominates X1. Suppose that perfect diversificationbetween X1 and X2 second order stochastically dominates Y . The next result shows that perfectdiversification between X1 and Y is better for any risk-averse individual than investing in Y (orin X1) alone.
Proposition 6.3 (Hadar and Russell). If Y >2 X1 but 1

2X1 +
1
2X2 >2 Y , then

1
2X1 +

1
2Y >2 Y .This follows immediately from the transitivity and linearity properties of second-order stochas-tic dominance that we saw in Exercises 5.4 and 5.5:

1
2X1 +

1
2Y >2

1
2X1 +

1
2X2 >2 Y .Exercise 6.3. Argue that, if X1, X2 , X3 and X4 are i.i.d. assets, then a portfolio containing equalamounts of the four assets second-order stochastically dominates each of them:

1
4(X1 + X2 + X3 + X4) ≥2 X1.Exercise 6.4. A betting house in London is offering bets on the winners of two tennis matches.Match 1 is between M (for Maria) and S (for Serena); match 2 is between N (for Novak) and R(for Rafa). It is clear that in both cases the players are evenly matched, and that the outcome ofone match is independent of the outcome of the other.The betting house offers three bets. B1 pays $2 if M wins match 1, and $0 if S wins it; B2pays $2 if N wins match 2, and $0 is R does. Each of these bets has a cost of $1. Additionally,the house offers a “Combo” bet, C , which consists of half a ticket of each of the two other bets,also at a cost of $1.
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a. Construct and draw the c.d.f. of the net payoff of B1 and of Combo bet C .
b. Suppose that you are hired to advise on the betting decision of an individual (who enjoyswealth). She has four options: to buy one ticket for B1, one ticket for B2, one ticket for C , orto do nothing. What would you advise her to do? Explicitly write how you would rank thebets in your advice.

Reading. The following two excerpts are from articles in The Economist. Discuss them critically.First,
There can be fashions in investing as
well as in the arts. Over the past
25 years many university endowments
have moved over to the “Yale model”,
an investment strategy adopted by the
Connecticut-based university in the
1980s. Under the leadership of David
Swensen, Yale has invested across a
wide range of “alternative assets”, from
private equity and hedge funds to tim-
ber...

One idea behind the Yale strategy was
that endowments have the luxury of
time, since their liabilities (paying for
new buildings, academic salaries and
so on) stretch far into the future. They
can thus afford to invest in illiquid as-
set classes. Such asset classes may
offer a better return simply because
other investors (mutual funds, for ex-

ample) are unwilling or unable to deal
with illiquidity.
In addition, the traditional dominance
of domestic equities within institu-
tional portfolios put lots of eggs in
one basket. There were other sources
of return—the management skills of
private-equity houses, the market for
distressed bonds—where the trade-
off between risk and reward might be
better than could be obtained from the
S&P 500 index...
But the model came into question in
2008 and 2009, when the financial cri-
sis hit. In the year to June 30th 2009,
the Yale endowment fell by 24.6% and
Harvard’s portfolio fell by 27.3%, los-
ing the latter a whopping $10 bil-
lion. (there has been a modest recov-
ery since then).

On the other hand,
The financial crisis decimated the
wealth of the average American. [...]
To a large extent you can blame the
housing bubble. For many middle-
and lower-middle-income Americans
their home made up nearly all of their
wealth.
They were largely invested in a sin-

gle asset that did very poorly in this
period. Richer Americans, who held
other assets, did not see such large
declines. This demonstrates how im-
portant it is to diversify your wealth,
even when you don’t have much of
it. Why did these Americans have so
much housing in their portfolio?
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Obviously there was the housing bub-
ble and sub-prime mortgages, which
made levering up to buy a house too
easy. But I think it goes deeper than
that. Anecdotally there seemed to be a
mentality that you should buy as much
housing as you can afford, not as much
as you need. That may be because
of the pervasive view during this pe-

riod that housing is always a good in-
vestment. That idea coupled with the
favoured tax treatment of home own-
ership created an incentive for Amer-
icans to put nearly all of their wealth
into a single asset. Unless we see a
strong rebound in house prices, many
Americans may pay the price for that
with a grim retirement.

From: Buttonwood, The Economist (March 10th, 2011) “Yale may not have the key: why diversi-fication doesn’t work”; and Free exchange, The Economist, Economics (June 18th, 2012) “Housingand wealth: the perils of not diversifying”.

Reading. The following excerpt is from an article in The New York Times. Discuss it critically.
It’s a classic moment in sports history.
With less than 20 seconds left in Game
6 of the 1998 N.B.A. finals and the
Chicago Bulls down by one, Michael
Jordan goes one-on-one with Bryon
Russell of the Utah Jazz. He pushes
off (clearly!), Russell stumbles and the
ball hits nothing but net. Game over.
Bulls win.

Now let’s imagine that something dif-
ferent happened. Jordan misses the
shot in Game 6, and Game 7 comes
down to the same spot: fewer than 20
seconds left with the Bulls down by
one. If you’re Phil Jackson, the head
coach, do you set up the last play for
Jordan, or does the ball go to someone
else?

Of course the right strategy is to
put the ball in Jordan’s hands. Just

because he missed the shot before
doesn’t mean it was the wrong strat-
egy to have Jordan shooting the ball
in the final seconds. The odds are in-
credibly high that he will make the
shot even though he missed it the
night before.

I bring this up because it perfectly
captures the investing adage that
never seems to die: diversification is
“broken.” It seems as if this story pops
up every year, but it’s not really about
anything new. Both Joshua M. Brown
at The Reformed Broker and Barry
Ritholtz at The Big Picture have writ-
ten blog posts about it recently. Mr.
Brown quoted an adviser who said:
“Why bother diversifying at all? It’s
just a drag on performance. What’s
the point of owning any bonds or in-
ternational stocks?”

From: Richards, C.,The New York Times (August 12th, 2013) “Diversification isn’t broken, it justtakes a while”.
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Note 7

Foundations of expected utility theory

It is time now to explore how good the expected utility assumption is. Let us go back to thebasic setting where there is a finite set of possible outcomes, and where the set of lotteriesover those outcomes is ∆. Henceforth, we assume only that some preference relation % is rational,and define � and ∼ as before. Our goal is to understand what it means to assume that % hasan EU representation.To begin, note that while it may seem natural that the individual’s preferences, %, are a binaryrelation over ∆, in doing this we are imposing the condition that the individual cares about therisk (randomness) she faces, and not about the process that ultimately determines that risk;this condition is known as “consequentialism,” and there are reasons, both psychological andphilosophical, to think that this assumption is restrictive. We won’t go into those considerations,focusing more on the types of behavior that are consistent with the decision maker being an EUindividual.
7.1. Further properties of preferences

We say that relation % satisfies monotonicity if given two lotteries, p and p̃ such that p � p̃,the following statement is true: αp+(1−α)p̃ � βp+(1−β)p̃ if, and only if, α > β . In words, adecision-maker with monotonic preferences prefers more of a better lottery to more of a worselottery.
Example 7.1. Consider the decision-maker of Exercise 1.2. Argue that these preferences satisfymonotonicity.
Answer: It’s best to proof the two properties that define monotonicity independently:

1. That, given p � p̃, if it is true that
αp+ (1− α)p̃ � βp+ (1− β)p̃,

then it must be that α > β .
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2. that if it is true that
αp+ (1− α)p̂ % αp̃+ (1− α)p̂,for some number 0 < α < 1 and some lottery p̂, then it must be true that p % p̃.

For the first claim, note that since p � p̃, it must be true that p1+ p2 > p̃1+ p̃2 . If, moreover,
αp+ (1− α)p̃ � βp+ (1− β)p̃, then one must also have that

[αp1 + (1− α)p̃1] + [αp2 + (1− α)p̃2] > [βp1 + (1− β)p̃1] + [βp2 + (1− β)p̃2].

But one can rewrite this expression as
α(p1 + p2) + (1− α)(p̃1 + p̃2) > β(p1 + p2) + (1− β)(p̃1 + p̃2),

which implies the result: it must be true that α > β .For the second claim, if αp+ (1− α)p̂ % αp̃+ (1− α)p̂, it must be that
[αp1 + (1− α)p̂1] + [αp2 + (1− α)p̂2] > [αp̃1 + (1− α)p̂1] + [αp ′2 + (1− α)p ′′2 ].

Rewriting this as
α(p1 + p2) + (1− α)(p̂1 + p̂2) > α(p̃1 + p̃2) + (1− α)(p̂1 + p̂2),

one concludes that p1 + p2 ≥ p̃1 + p̃2 , which gives the result: it follows that p % p̃. �

Example 7.2. Consider a decision-maker who faces uncertainty over a finite set of possible out-comes, X = {1, 2, 3, 4}, and suppose that her preferences are represented by the followingfunction:
U(p) =

{
1, if px = 1/4 for all x ;
0, otherwise.Argue that the individual’s preferences do not satisfy the following property: for all p and p̃ andall α ∈ [0, 1], if p ∼ p̃, then αp+ (1− α)p̃ ∼ p̃.

Answer: Consider the lotteries p = (1/2, 1/2, 0, 0) and p = (0, 0, 1/2, 1/2). Since U(p) = U(p̃) = 0,so p ∼ p̃). Now, it α = 1/2, we have p̂ = αp+(1−α)p̃ = (1/4, 1/4, 1/4, 1/4), so U(p̂) = 1 and p̂ � p. �

Example 7.3. Consider a decision-maker who faces uncertainty over a finite set of possible out-comes, X = {1, 2, 3}, and suppose that her preferences are represented by the following function:
U(p) = min {p1, p2}+ a(1− p1 − p2)

Argue that he individual’s preferences satisfy the following convexity condition: given p � p̃, if
0 ≤ α ≤ 1, then αp+ (1− α)p̃ % p̃.
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Answer: If p % p ′, it must be true that U(p) ≥ U(p ′). Also, note that

min {αp1 + (1− α)p ′1, αp2 + (1− α)p ′2} ≥ α min {p1, p2}+ (1− α)min {p ′1, p ′2} .
From this, it follows that

U(αp+ (1− α)p ′) = min {αp1 + (1− α)p ′1, αp2 + (1− α)p ′2}
+ [α(1− p1 − p2) + (1− α)(1− p ′1 − p ′2)]
≥ α[min {p1, p2}+ (1− p1 − p2)]
+ (1− α)[min {p ′1, p ′2}+ (1− p ′1 − p ′2)]
≥ min {p ′1, p ′2}+ (1− p ′1 − p ′2)
= U(p ′). �

Exercise 7.1. Consider the decision-maker of Exercise 1.3. Argue that this individual’s preferences
do not satisfy the convexity condition defined in Example 7.3.

A very important condition imposes that the decision-maker values the outcomes of thelotteries for themselves and then, separately, the randomness induced over them by the lottery:
Definition. Preference relation % satisfies independence if, given two lotteries p and p̃, the
following statements are true:

1. if p % p̃, then for any number 0 ≤ α ≤ 1 and any lottery p̂ we have that

αp+ (1− α)p̂ % αp̃+ (1− α)p̂;

2. if for some number 0 < α < 1 and some lottery p̂ we have that

αp+ (1− α)p̂ % αp̃+ (1− α)p̂,

then p % p̃.

The latter property is controversial, and we will come back to it later. The following exercisesrelate these two properties.
Exercise 7.2. Argue that independence of % implies the following property: for any pair of lotteries
p and p̃:
a. if p ∼ p̃, then for any 0 ≤ α ≤ 1 and any lottery p̂, αp+ (1− α)p̂ ∼ αp̃+ (1− α)p̂;
b. if for some 0 < α ≤ 1 and some lottery p̂ we have that αp+ (1− α)p̂ ∼ αp̃+ (1− α)p̂, then
p ∼ p̃.

c. if p � p̃, then for any 0 < α < 1 and any lottery p̂, αp+ (1− α)p̂ � αp̃+ (1− α)p̂;
d. if for some 0 < α < 1 and some lottery p̂ we have that αp+ (1− α)p̂ � αp̃+ (1− α)p̂, then
p � p̃; and
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e. if p � p̃ and 0 < α < 1, then p � αp+ (1− α)p̃ and αp+ (1− α)p̃ � p̃.Exercise 7.3 (Harder). Argue that independence of % implies its monotonicity.1
7.2. The von Neumann–Morgenstern theorem
We now ask the question of when % has an EU representation. A first result is that independenceis a necessary condition for this:Exercise 7.4. Argue that if % has an EU representation then it satisfies independence.A seminal result is decision theory was obtained by John von-Neumann (Hungary, 1903-1957)and Oskar Morgenstern (Germany 1902-1977).2 It implies that, under a (technical) assumption of“continuity,” independence is also a sufficient condition. Together with Exercise 7.4, it implies thatindependence is equivalent to the existence of an EU representation for an agent’s preferencesover lotteries. The full proof of the von Neumann-Morgenstern theorem is beyond these lectures,but a simplified argument is presented next.For simplicity, we concentrate only on a small subclass of lotteries, rather than on the wholespace ∆. We say that a lottery is simple if it gives positive probability to at most two outcomesin X .3 For simplicity, then, we can denote a simple lottery as a triple consisting of a numberand two outcomes, L = (p, x, x ′), with 0 ≤ p ≤ 1 and x, x ′ ∈ X , and with the interpretation thatthe lottery gives outcome x with probability p, and outcome x ′ with probability 1−p. Let L1 bethe space of simple lotteries, L1 = [0, 1]×X × X .A compound lottery is a device that gives other lottery or lotteries as prizes. We will concen-trate on compound lotteries that give positive probability to at most two simple lotteries,4 anddenote them by (p, L, L ′), a number and two simple lotteries, L, L ′ ∈ L1. Let L2 be the space ofcompound lotteries, L2 = [0, 1]× L1 × L1.For our argument, we consider only degenerate, simple and our simplified definition of com-pound lotteries, so we take % as defined over L = X ∪L1∪L2 . In order to keep consistency withthe analysis above, we need consider an individual who cares about outcomes, and not abouthow these outcomes are presented, so we impose the following “consequentialist” assumptionson %: for all p, p̃ ∈ [0, 1] and for all x, x ′ ∈ X , (p, x, x ′) ∼ (1 − p, x ′, x), (1, x, x ′) ∼ x and
[p, (p̃, x, x ′), x ′] ∼ (pp̃, x, x ′). For simplicity, suppose also that we can find x∗, x∗ ∈ X such thatfor every outcome x ∈ X we have that x % x∗ and x∗ % x .We will say that % satisfies continuity if, for any x, x ′, x ′′ ∈ X such that x % x ′ % x ′′, we canfind a number 0 ≤ p ≤ 1 such that (p, x, x ′′) ∼ x ′.Theorem (The von Neumann–Morgenstern Theorem). If % satisfies independence and continuity,
then it has an EU representation (with continuous index u).

1 This exercise is a tiny bit more complicated than the others, so here go two hints. First, suppose that youwant to write βp + (1 − β)p̃ as γp + (1 − γ)(αp + (1 − α)p̃), given that β > α ; what value must γ have? Then,notice the last property of Exercise 7.2.2 Hence the name that we’ve been using for the EU representations of preferences!3 The term “simple” is normally used for lotteries that pay in outcomes and not in other lotteries; here, I amusing it is that sense, but making it stronger to require that they pay in only one or two outcomes.4 As before, the term “compound” is normally used for lotteries that pay in other lotteries; here, I am using it isthat sense, but making it stronger to require that they pay in only one or two lotteries.
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Proof. Now, if % satisfies monotonicity, it is relatively easy to construct a utility function rep-resenting it over the space of simple lotteries: by continuity, for any lottery in L, we can find
p ∈ [0, 1] such that L ∼ (p, x∗, x∗); by monotonicity, such p ∈ [0, 1] has to be unique; then, just let
U : L→ R be defined by letting U(L) be the unique number p ∈ [0, 1] such that L ∼ (p, x∗, x∗).Since L includes degenerate lotteries, we can define u : X → R by letting u(x) = U((1, x, x)).Now, we just want to show that the expected utility property is satisfied in the following sense:for every simple lottery (p, x, x ′), U((p, x, x ′)) = pu(x) + (1− p)u(x ′).Notice that, by construction, (p, x, x ′) ∼ [U(p, x, x ′), x∗, x∗], whereas, by independence,

(p, x, x ′) ∼ [p, (u(x), x∗, x∗) , (u(x ′), x∗, x∗)].

By direct computation, it follows that
(p, x, x ′) ∼ [pu(x) + (1− p)u(x ′), x∗, x∗],

which implies, by monotonicity, that U(p, x, x ′) = pu(x) + (1− p)u(x ′). �

Exercise 7.5. Argue that if % satisfies independence, then:
a. x � x ′ and 0 ≤ p̃ < p ≤ 1 imply that (p, x, x ′) � (p̃, x, x ′);
b. L � L ′ and 0 ≤ p̃ < p ≤ 1 imply that (p, L, L ′) � (p̃, L, L ′);
c. if x % x ′, then for any x ′′ and any 0 ≤ p ≤ 1 it is true that (p, x, x ′′) % (p, x ′, x ′′);
d. if for some x ′′ and some 0 ≤ p ≤ 1 it is true that (p, x, x ′′) % (p, x ′, x ′′), then x % x ′;
e. if L % L ′, then for any L ′′ and any 0 ≤ p ≤ 1 it is true that (p, L, L ′′) % (p, L ′, L ′′);
f. if for some L ′′ and some 0 ≤ p ≤ 1 it is true that (p, L, L ′′) % (p, L ′, L ′′), then L % L ′.
7.3. Is independence a good assumption?
Independence is a strong assumption: it implies that the decision-maker is able to evaluateoutcomes without worrying about the randomness between them (which is fine, as degeneratelotteries allow for that), and then evaluates the randomness in a way which is perfectly consistentwith the “deterministic” evaluation. The second step is controversial: introspection can give youcases in which the winning and losing outcomes are so «related» that the randomness cannotbe assessed independently.
7.4. Subjective expected utility
The framework that we have been considering is not the most general setting in which onecan study decision making under uncertainty: the decision maker is assumed to choose theprobabilities of the outcomes that she faces, and it is assumed that these probabilities areobjectively presented to her. While a more general model is beyond the level of our course, wecan at least introduce its main difference.

A. Carvajal



54 Foundations of expected utility theory

The EU model of Note 1 assumes that the set of contingencies that describe the world and theset of contingencies that the decision maker cares about are the same. Instead, let us continueto denote by X , ∅ be a set of outcomes, namely that the full description of what determinesthe individual’s well-being. Independently, a state of the world is a comprehensive descriptionof the status of all the contingencies that can affect the decisions of the individual.5 Let S bethe set of states of the world.In this richer setting, an act is a mapping of states of the world into outcomes, namely afunction a : S → X . The Subjective EU Model does not assume that individuals rank (or choose)lotteries over outcomes. Instead, they choose acts: plans of what outcome will come about ineach state of the world. The main difference, is that the choice of an act does not pin down theprobability of each outcome, as the state of the world, which is what will determine the outcome,is out of the control of the individual.As an alternative to the von-Neumann–Morgenstern analysis, Leonard Savage (USA, 1917-1971) suggested the following model, which is more general: the decision maker has preferences
% over the space of acts, which is denoted by A; these preferences have a subjective expectedutility (SEU) representation, if there exists a probability distribution π , defined over the set S ofstates of the world, and a utility index u : X → R such that

a % ã⇔ E π[u(a)] ≥ E π[u(ã)],

where E π[u(a)] =
∑
s
πsu(a(s)).

The main gain of this construction is that the probability distribution π is part of the individ-ual’s thought process, and need not coincide with any external distribution (which, incidentally,need not even exist).

5 In the words of K. Arrow (Essays on the Theory of Risk Bearing, 1971, p. 45), it is “a description of the worldso complete that, if true and known, the consequences of every action would be known.”
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Non-EU theories

There are alternative models, though. As mentioned before, it is not difficult to imagine sit-uations in which a decision maker finds it difficult to assess the probability distribution ofsome risks that she faces, or where the possible outcomes she can obtain make her preferencesviolate the independence axiom. Even simple introspection can give us instances of those situ-ations, and it follows from before that the model we have been using so far is not suitable forthose situations.
8.1. Some experimental challenges
Next, we present four experiments, designed by psychologists, where the majority of peopledisplay behavior that would be hard to reconcile with the EU (or even the SEU) paradigm. Theseexamples have motivated the development of alternative theories, which we then present, briefly.
8.1.1. Allais’s paradoxA canonical observation is the following: consider a space of monetary outcomes, and supposethat the following lotteries are available:

p1 = x $0 $1M $5M
p1x 0 1 0 p2 = x $0 $1M $5M

p2x 0.01 0.89 0.1
p3 = x $0 $1M $5M

p3x 0.89 0.11 0 p4 = x $0 $1M $5M
p4x 0.9 0 0.1

It has been observed that when asked to compare these lotteries, many people respond that
p1 � p2 and p4 � p3. (Are these your preferences too?) Well, it turns out that these preferencescannot have an EU representation! To see this, notice that a representation would requirenumbers u(0), u(1) and u(5) such that U(p) = E p(u). Then, the revealed choices say that usatisfies the following two inequalities:

E p1(u) = u(1) > 0.01u(0) + 0.89u(1) + 0.1u(5) = E p2(u),while E p3(u) = 0.89u(0) + 0.11u(1) < 0.9u(0) + 0.1u(5) = E p4(u).
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But, then, from the first equation 0.11u(1) > 0.01u(0)+0.1u(5), while from the second equation
0.11u(1) < 0.01u(0) + 0.1u(5).This observation, proposed by Maurice Allais (France, 1911–2010), suggests that many peopledon’t conform to the assumptions required for their preferences to have an EU representation.
8.1.2. Gains vs. losses

A second simple experiment captures part of what may explain Allais’s paradox in a more directway. Consider the following choice situation:
You are given $1K, and are asked to choose between the following two options:

(a) You get an additional $500 for sure; or(b) You get an additional $1K with probability 1/2 (and otherwise get nothing more).
Now consider this alternative situation:

You are given $2K, and are asked to choose between the following two options:
(c) You lose $500 for sure; or(d) You lose $1K with probability 1/2 (and otherwise lose nothing).

Experimentally, many people prefer (a) in the first situation and (d) in the second one. (Doyou?) The problem is that from the point of view of income payoffs the two situations areequivalent, so an EU agent should choose the same option in both.
8.1.3. Ellsberg’s one-urn paradox

There is another observation of usual individual choices that are inconsistent with the vonNeumann–Morgestern representation of preferences, and which makes a “problem” very appar-ent. It is due to Daniel Ellsberg.1Suppose that there is an urn that contains 90 balls. Thirty of them are known to be red,while each of the remaining 60 is known to be blue or green, but the proportion of each of thesetwo colours is not known. Four lotteries are presented:
1. a $1M prize if a red ball is drawn;
2. a $1M prize if a blue ball is drawn;
3. a $1M prize if a red or a green ball are drawn; or
4. a $1M prize if a blue or a green ball are drawn.
1 A pretty remarkable guy: he leaked classified information about how the U.S. government had been, let’s say,less than candid about the Vietnam war.
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It is usually stated by people that they prefer the first lottery to the second lottery, and thefourth lottery to the third lottery. (One more time, are these your preferences too?) But, again,these preferences are not consistent with an EU representation. To see this, suppose that thepreferences can be represented with a utility index u. For simplicity of notation let the utility ofnot getting the prize is 0, and the utility of getting it is 1.2 Then, the choices say that

Pr(red) > Pr(blue) and Pr(red or green) < Pr(blue or green).
But we can rewrite these inequalities as

Pr(red) > Pr(blue) and 1− Pr(blue) < 1− Pr(red),
which is obviously inconsistent.
8.1.4. Ellsberg’s two-urn paradoxAlternatively, suppose that there are two urns: Urn 1 contains 50 red balls and 50 blue balls.Urn 2 contains 100 balls, each of which is known to be red or blue, but the proportion of eachof these two colours is not known. Now, four lotteries are offered:

1. a $1M prize if a red ball is drawn from urn 1;
2. a $1M prize if a blue ball is drawn from urn 1;
3. a $1M prize if a red ball is drawn from urn 2; or
4. a $1M prize if a blue ball is drawn from urn 2.

The observation is that many people are indifferent between the first two lotteries, indifferentbetween the third and fourth lotteries, and strictly prefer the first lottery to the third lottery.Since the prize is the same, the first indifference requires that in the first urn both colourshave probability 1/2, while the second indifference implies that the same is true for the secondurn. But this contradicts the third observation, for if the previous probabilities are correct andthe individual’s preferences have an EU representation, then the individual should be indifferentbetween the first and third lotteries.
8.2. Non-EU theories
We now present, briefly, some possible explanations, or models, for the observational paradoxeswe just introduced. Some of these models are directly motivated by the experiments.
8.2.1. Prospect theory I: perceived probabilitiesFor a person with some mathematical training, the concept of probability seems very simple,perhaps. But the fact that the concept requires some understanding suggests that it is notcompletely natural for human decision makers.

2 Note that this assumption implies no loss of generality.
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Amos Tversky (Israel, 1937–1996) and Daniel Kahneman (Israel, 1934) have proposed a theoryof how the human brain deals with uncertainty that distinguishes between what the objectiveprobability of an event is and what a human brain perceives it to be.3Let us imagine that when the actual probability of an outcome is px , a decision maker’s brainperceives it to be π(px). Obviously, 0 ≤ π(px) ≤ 1 for all p, and presumably π is an increasingfunction. In this case, even if we don’t question any of the premises of the EU model, we shouldmodify our equations so that, the representation of the individual’s preferences should be that,when presented with a lottery p over some outcome space X ,
U(p) =

∑
x
π(px)u(x),

since what matter for the individual’s well-being is her perception of risk.Tversky and Kahneman postulated that our brains tend to under-estimate very low proba-bilities and to over-estimate very high ones, so that the π function of a typical individual lookslike the function of Fig. 8.1. There, the graph of the function is below the diagonal when p isclose to 0, and above it when p is near 1.

p

π(p)

1

1

Figure 8.1: Actual and perceived probabilities.
One complication with this model, however, is that π(p) need not be a probability distributioneven when p is. In that sense, the expression defining function U cannot be called an expectedutility. Some extensions of the theory have been proposed to deal with this problem.

8.2.2. Loss aversionAn alternative explanation for Allais’s paradox is that when people assess events that have notoccurred, they do so by comparing them to some reference point. If the reference point changes,an individual may feel differently about some event, even when that event is objectively the same.In the paradox, when comparing p1 and p2 a person may take as a reference point the income of$1M that she earns for sure with p1, and the possibility of losing that money may make lottery
p2 very unappealing. If, on the other hand, when comparing p3 and p4 the reference point is the

3 If, for instance, our brain perceives 0.11 and 0.11 as being essentially the same number, it’s not surprising thatmany of us find p4 better than p3 in the Allais experiment, regardless of how we felt about p1 and p4.
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$0 income that is most likely in both lotteries, how she feels about gambling to get $1M or $5Mmay induce the assessment that seemed inconsistent above.Again, Tversky and Kahneman suggested an explanation for this phenomenon: people getattached to what they own, and they value their possessions more than what they would bewilling to pay for them if they didn’t already have them. One way to introduce this idea to amodel of uncertainty is to introduce two functions, g and ` , that represent how the agent assessgains and losses relative to the reference point, respectively. Assume that both functions areincreasing and satisfy that g(0) = `(0) = 0. When the agent has an income level x̄ as herreference point and assesses an alternative income level x , her utility is given by

v(x, x̄) = u(x) + g(x − x̄), when x ≥ x̄,

and by
v(x, x̄) = u(x) − `(x̄ − x), when x < x̄.This means that, instead of the simple Bernoulli index, the utility over sure outcomes isassessed according to a function like the one in Fig. 8.2. There, the graph presents a kink atthe reference income. To the left of the kink, the marginal utility is given by u ′(x) + ` ′(x̄ − x);to the right, it is u ′(x) + g ′(x − x̄). The kink in the graph is given under the assumption that

` ′(0) > g ′(0); this means that the marginal utility is smaller for (infinitesimal) gains than themarginal dis-utility of (infinitesimal) loses. This phenomenon is known as loss aversion.
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v(x, x̄)

x̄

u(x) − `(x̄ − x)

u(x) + g(x − x̄)

Figure 8.2: Sure income and utility.
8.2.3. Prospect theory 2: gain-loss asymmetriesThe observation of the experiment in Subsection 8.1.2 can be explained through a further as-sumption on the shape of the gain and loss functions we just introduced. Note that if, in thepresence of these functions, the individual were “always risk averse,” then, in addition to u, thefunction g should be concave and the function ` should be convex.4 But note that also that thechoice of (a) in the first situation of the experiment corresponds to risk-averse behavior, whilethe choice of (b) in the second situation seems to display love for risk.

4 So that −` is concave.
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Tversky and Kahneman, again, suggest an explanation for this: that the loss function neednot be convex. Suppose for instance that, given the reference point x̄ , the utility of sure incomelevels is as in Fig. 8.3. In this case, the agent displays a very strong aversion to small losses,but this feeling vanishes as the size of the loss increases, which can explain why a sure loss of$500 when the person’s reference income is $2K can seem more costly than a loss of $1K withprobability 1/2.
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Figure 8.3: Sure income and utility.
8.2.4. AmbiguityThe observations of Ellsberg are particularly illustrative of the problem that the von Neumann–Morgestern theory may be displaying in these cases. Consider the one-urn experiment. Notethat the probability of getting the prize in the first lottery is known to be 1/3, but the probabilityof getting it in the second lottery is not known. With the information given, it could be anynumber in {0, 1/90, 1/45, 1/30 . . . , 2/3}. On the other hand, in the fourth lottery the probabilityof winning is known to be 2/3, whereas in the third one it is not, and could be any number in
{1/3, 31/90, 16/45, 11/30, . . . , 1}. In both choice situations, individuals seem to prefer the lotterywhere the probability of winning the price is known to that where it is not.This feature of the problem is known as ambiguity.5 Note that if the individual, in her mind,resolved the ambiguity by picking a probability for blue balls, and applied it consistently inboth situations, then the preferences would be different. Say that the individual thinks that theprobability of drawing a blue ball is 1/6 , and therefore the probability of a green ball is 1/2.Then, she should indeed prefer the first lottery to the second one, but should also prefer the thirdlottery to the fourth one: the probability of getting a red or a green ball is now 1/3+ 1/2 = 5/6 ,whereas the probability of drawing a blue or a green ball is 1/6 + 1/2 = 2/3 < 5/6 .6

5 Historically, the feature of not knowing the probability distribution was called uncertainty, whereas the factthat the decision problem implied some randomness was called risk. But in many cases in which the distributionof random events was known by the decision-maker, the terms uncertainty and risk were used as synonyms, whichmay give rise to confusion.6 Alternatively, if the probability chosen is such that the fourth lottery is preferred to the third one, then thesecond lottery should be preferred to the first one.
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The solutions that have been proposed formalize the idea that people prefer to have moreprecise information, and in this case this implies that the choice of probabilities is not consistentbetween the two choice situations. For instance, suppose that an individual is pessimistic in thepresence of imprecise information: in each of the two choices she is presented with, she considersthe worst case for her. Then, when considering lottery two, she thinks that the probability ofwinning is null, for she cannot rule out the possibility that all the 60 balls are green. But whenshe is thinking of the third lottery, she considers the worst possible scenario, which is nowdifferent: she cannot rule out that all the 60 balls are blue either!In this case, her choices would be as observed in Ellsberg’s paradox. But, obviously, herpreferences are not representable as the expected value of some utility index for given proba-bilities. Instead, under ambiguity the decision-maker has a set of probability distributions thatshe cannot rule out, say ∆0 ⊆ ∆, and evaluates her choices using a worst-case scenario rule:min

p∈∆0
E p[u].

This rule is known as maximin preferences, or as Gilboa-Schmeidler representation, recognizingthe two economists who proposed it.7
8.2.5. CapacitiesThe two-urn paradox suggests another solution. In the first urn, the probabilities are known tobe 1/2, while in the second one there is no information about what they are. In the absence ofinformation, a decision maker could just think that both colours of ball are equally likely in thesecond urn, but since she is basing this conclusion only in the lack of a reason to think otherwise,she may “penalize” gambling on this urn. This would explain the pattern of choices presentedby Ellsberg, and can be formalized by weakening the concept of probability, something that wewill not do here.
Reading. The following excerpt is from an article in The Financial Times. Discuss it critically.

It is true that humans have an amazing
capacity to analyse complex problems.
Unfortunately, the calculating part of
our brain depends on intuitions to stir
it into action. Before [the work of No-
bel Laureate Daniel] Kahneman, we
tended to view intuitions as revealing
a profound, if ill-defined, understand-
ing of the world. We bowed down be-
fore the judgment of experts.

Our minds are not naturally good at
probabilities; they dislike ambiguity

and doubt; an ingrained desire to con-
struct coherent narratives leads us to
seek confirming evidence, while dis-
regarding information that refutes our
prior view. As a result, we are of-
ten more confident than the circum-
stances warrant. We also depend too
much on recent experience when form-
ing judgments—what Mr Kahneman
and his long-time collaborator Amos
Tversky call the “availability heuristic”.
Emotions constantly inform our judg-
ments.

7 Other models consider agents who do not concentrate all their attention in the worst possible outcome.
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What Mr Kahneman calls “cognitive il-
lusions” are a constant menace to in-
vestors. We repeatedly fail to antici-
pate financial disasters—such as the
dotcom collapse of 2000 or the implo-
sion of the US housing market a few
years later—because at the time they
were unfamiliar events.
Conversely, once we start to consider
rare outcomes we are prone to exag-
gerate their likelihood. In today’s in-
vestment world, every swan is deemed
black. Experiments show that people
react favourably to words that are re-
peated to them. “A reliable way to
make people believe in falsehoods,”
writes Mr Kahneman, “is frequent rep-
etition, because familiarity is not eas-
ily distinguished from truth. Authori-
tarian institutions and marketers have
always known this fact.”
Stockbrokers, who bombard clients
with often dubious investment re-

search, also seem aware of this hu-
man frailty. Experiments suggest that
when people have money on their
mind they become more selfish. Per-
haps this explains why Wall Street
fails on occasion to exhibit the highest
ethical standards.

Like everyone else, investors are prone
to overconfidence. Confidence usu-
ally derives from the coherence of the
information at hand and the ease of
processing it, rather than its valid-
ity. Investors are constantly deluded
by compelling stories. In the financial
world, skill is often confused with luck.
“Professional investors ... ,” writes Mr
Kahneman damningly, “ ... fail a basic
test of skill, persistent achievement.”
Yet in finance we also handle failure
badly. We tend to revise the history
of our beliefs in the light of events.
Agents are blamed for not anticipat-
ing events, however unpredictable.

From: Chancellor, E., The Financial Times (January 8th, 2012) “Humans are naturally bad in-vestors”.
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Note 9

Insurance markets

One of the canonical examples of asymmetric information is insurance markets. Implicit in thetrade of financial instruments, there is the possibility that informational asymmetries canperturb the functioning of theirl markets. We will consider the simplest possible setting, in whichthere are two periods and two (idiosyncratic) states of the world that can occur in the secondperiod. We will allow for the existence of two types of agents, who differ in the probabilitieswith which they face each of the two future states. Importantly, we will assume that the type ofeach individual is observed only by herself.
9.1. Perfect information
To establish a benchmark, let us first assume that there is only one type of agent in the market.In state of the world 1, her income is w ; in state 2, she faces a loss and her income is w− ` . Theprobability of incurring this loss is p. We assume that she is a strictly risk-averse, EU maximizer,so her ex-ante preferences over consumption plans x = (x1, x2) ∈ R2 are

U(x) = (1− p)u(x1) + pu(x2).

It is easy to see that this individual has downward sloping indifference curves, with marginalrate of substitution dx2dx1
∣∣∣∣dU=0 = −

(1− p)u ′(x1)
pu ′(x2)

.

For future reference, it is useful to note that over the full insurance line, the marginal rate ofsubstitution is dx2dx1
∣∣∣∣dU=0 = −

1− p
p .

Since u ′′ < 0, the marginal rate of substitution is, then, less than this value for plans below thefull insurance line.1
1 To see this, note that, along an indifference curve,

dx22d2x1 = −
(1− p)

[
u ′′(x1)u ′(x2) − u ′(x1)u ′′(x2) dx2dx1 ]

pu ′′(x2)2
> 0.
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Now, let Γ be the premium of an insurance contract against the income loss, and let α bethis contract’s net coverage.2 As a function of these two variables, the individual preferences are
v(α, Γ ) = (1− p)u(w − Γ ) + pu(w − ` + α).

For the insurance company, which we assume to be risk neutral, profits are
π(α, Γ ) = (1− p)Γ − pα.

Let us assume that competition between insurance companies drives their profits to 0. Then,it is immediate that for perturbations dα and dΓ to the contract that the insurance companywill offer, dπ = 0, which means that the isoprofit line has slopedαdΓ
∣∣∣∣
π=0

=
1− p
p .

At equilibrium, the isoprofit line and the indifference curve are tangent, so
1− p
p =

dαdΓ
∣∣∣∣
π=0

=
dαdΓ
∣∣∣∣dv=0 = −

dx2dx1
∣∣∣∣dU=0 = (1− p)u ′(w − Γ )

pu ′(w − ` + α) .Since the agent is strictly risk averse, the latter implies that Γ = ` − α , which means her grosscoverage is α + Γ = ` , so she insures fully. Then, from the zero-profit condition,
0 = (1− p)Γ − p(` − Γ ) = Γ − p`,

which means that the premium is actuarially fair. This solution is depicted in Fig. 9.1
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Figure 9.1: Efficient insurance under perfect information.
9.2. Imperfect information
For the case that is of interest, suppose now that there are two types of agents, H and L, andthat the agents of type H face a higher risk of experiencing the loss, so that pH > pL. Graphically,

2 The gross coverage would be α + Γ .
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this means that at any point in the space of consumption plans, type-H individuals have flatterindifference curves than those of type L.3 We assume that the proportion of high-risk individualsis λ ∈ (0, 1), and write p̄ = λpH + (1− λ)pL.In this setting, the definition of (Nash) equilibrium is, intuitively, as follows: an equilibriumis a set of insurance contracts such that, when all consumers choose their optimal contract, nocontract makes losses for the insurance companies, and there exists no alternative contract suchthat, if offered, it would give an insurance company a positive profit, given the consumers thatwould optimally demand it.
Definition 1 (Pooling equilibrium). A single contract (α, Γ ) constitutes a pooling equilibrium if:

1. low-risk individuals take it: V L(0, 0) ≤ V L(α, Γ );

2. high-risk individuals take it: V H(0, 0) ≤ V H(α, Γ );

3. insurance profits are zero: π̄ = (1− p̄)Γ − p̄α = 0; and

4. no insurance company finds a profitable deviation: there exists no (α ′, Γ ′) such that

V L(α, Γ ) ≤ V L(α ′, Γ ′), V H(α, Γ ) > V H(α ′, Γ ′), and (1− pL)Γ ′ − pLα ′ > 0.

In particular, the last condition implies that no insurance company can deviate by offeringan alternative contract that attracts the low-risk individuals only, and with which, given that, itwould obtain positive profits. An alternative type of equilibrium is the following.
Definition 2 (Separating equilibrium). A pair of contracts {(αL, Γ L), (αH , ΓH)} is a separatingequilibrium if:

1. low-risk individuals take one contract:

max{V L(0, 0), V L(αH , ΓH)} ≤ V L(αL, Γ L);
2. high-risk individuals take the other contract:

max{V H(0, 0), V H(αL, Γ L)} ≤ V H(αH , ΓH);
3. insurance profits are zero in both contracts:

πL = (1− pL)Γ L − pLαL = 0 and πH = (1− pH)ΓH − pHαH = 0;

4. no insurance company finds a profitable deviation: there exists no (α ′, Γ ′) such that

V L(αL, Γ L) ≤ V L(α ′, Γ ′), V H(αH , ΓH) ≤ V H(α ′, Γ ′), and (1− p̄)Γ ′ − p̄α ′ > 0.
3 Importantly, note that we are assuming that the two types differ only in their probabilities of realizing theloss, and not in any other parameters, nor in their Bernoulli indexes.
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9.3. Impossibility of pooling equilibrium
In the case of a pooling equilibrium, the iso-profit line has a slope (1 − p̄)/p̄. By construction,
pH > p̄ > pL, which implies that

1− pH
pH < 1− p̄

p̄ < 1− pL
pL .

Recalling our observation of Section 9.1, this means that over the full insurance line, the indif-ference curve of a low-risk individual is flatter than the isoprofit line, which is itself flatter thanthe indifference curve of a high-risk consumer.4Fig. 9.2 depicts a potential pooling equilibrium, at the contract that yields point A. Thatinsurance firms make null profits follows from the fact that the contract lies on the isoprofit line,and both individuals prefer point A to their endowments.5
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Figure 9.2: A candidate to pooling equilibrium.
Proposition 9.1 (Impossibility of pooling). There can be no pooling equilibrium in this economy.

Proof. Consider now Fig. 9.3, where we have added the isoprofit line for
π ′ = (1− pL)Γ ′ − pLα ′ = 0.

This line is steeper, since p̄ > pL. Now consider a contract strictly within the area formed bythe lens ADC. It is immediate that every low-risk individual would prefer this, while all high-riskindividuals would prefer to remain at A. This implies that the isoprofit line for π ′ would be therelevant one for this contract, and the firms can choose the contract so as to make strictly positiveprofits. �

4 Since we are assuming that the consumers are risk averse, the latter observation will hold true everywhere
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Figure 9.3: There is no pooling equilibrium.
9.4. Does a separating equilibrium exist?
If an equilibrium exists, it must then be one that separates the two types of consumers. Fig. 9.4depicts a potential separating equilibrium, where point A corresponds to the contract that high-risk individuals take, and point B to the one for low-risk consumers.

-
x1

6
x2

�
�
�
�
�
�
�
�
�
�
�
�
�
�

x1 = x2

aaaaaaaaaaaaaaaaaaaaaaa

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

w

w − `
A B

C
πH = 0

πL = 0

UH = µ

UL = ν

Figure 9.4: A candidate to separating equilibrium
below the full insurance line: the indifference curve gets even flatter there. The former observation, for the samereason, need not be true everywhere, but it certainly holds for plans sufficiently close to the full insurance line.5 It is useful to note that point B cannot be an equilibrium, as insurance companies could offer an alternativecontract that all consumers would prefer to take and, still, would give them strictly positive profits.
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If each individual takes the contract that corresponds to her type, it is immediate that bothcontracts break even. It is also immediate that type-L individuals do take their contract, as theyare better off at B than at their endowments and at A. The analogous analysis is true for high-risk individuals, and they too take their contract, at A. Importantly, though, these two contractsresult in qualitatively different insurance profiles: while type-H individuals are fully insured atA, those of low risk only get partial insurance. The asymmetry is explained, precisely, by the factthat the insurance company cannot identify the type of each individual, so it needs to use thedesign of the contracts to elicit this information. If an insurance company offered full insuranceto type-L agents, so as at point C, all individuals would take this contract, and the companywould make losses. The same is not true for the full-insurance contract of risky individuals, asno agent of type L prefers A to B.Now, for this pair of contracts to constitute an equilibrium, it must also be true that noinsurance company can deviate and make higher profits offering an alternative contract. Inparticular, no contract that would attract both types of consumers can give an insurance companystrictly positive profits. Fig. 9.5 depicts the isoprofit consistent with
π̄ = (1− p̄)Γ − p̄α = 0.

This line lies between the other two isoprofits, and its position depends on the value of λ. In thecase of Fig. 9.5, no contract that attracts high risk individuals and gives the insurance companynon-negative profits would be taken by low risk individuals, so the pair of contracts is, indeed,a separating equilibrium.
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Figure 9.5: A separating equilibrium
Importantly, the situation of Fig. 9.5, does not always occur, and imperfect information mayinduce non-existence of separating equilibria too.

Proposition 9.2. For λ close enough to 0, there exists no separating equilibrium.
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Proof. For lower values of λ, the isoprofit for π̄ = 0 must be rotated clockwise. It is clear fromFig. 9.5, that if we rotate this line enough, we can find contracts that would be attractive to bothtypes of individuals and would make zero profits, as in Fig. 9.6. A contract close enough to itwould still be preferred by all consumers, and can be chosen to give strictly positive profits tothe insurance company. �
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Figure 9.6: No separating equilibrium

Example 9.1. In this canonical insurance problem, suppose that ex-ante preferences over con-sumption plans are
Uτ(x) = (1− pτ) ln x1 + pτ ln x2,for agents of type τ = H, L.

a. Argue that if the type of each individual was observable, then two insurance contracts wouldbe offered, (ΓH , αH) and (ΓL, αH), with premium Γτ = pτ` and coverage ατ = (1− pτ)` .b. Now, suppose that the type of each individual is unobservable, but the market reaches aseparating equilibrium. With respect to this equilibrium,
(i) Argue that the contract for individuals of type H is still the one described in part 1.(ii) Argue that the contract for individuals of type L satisfies

(1− pL)ΓL − pLαL = 0

and ln(w − pH`) = (1− pH) ln(w − ΓL) + pH ln(w − ` + αL).
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Answer: We saw the argument in class:
a. Under perfect observation and competition, at equilibrium there is perfect insurance and firmsmake zero profits. This implies that (Γτ , ατ) is the solution to the equations:

w − Γτ = w − ` + ατ

and
(1− pτ)Γτ − pτατ = 0.

b. Again, we saw the argument in class: under asymmetric information, H-types get their com-petitive contract, while L-types have their coverage limited by the incentive compatibilityconstraints of the H individuals.If an H individual gets the contract designed for her, her utility is
(1− pH) ln(w − ΓH) + pH ln(w − ` + αH)

which is simply ln(w − ` + αH), as this contract offer full insurance. If she takes the contractdesigned for L-types her utility is
(1− pH) ln(w − ΓL) + pH ln(w − ` + αL).

The incentive compatibility constraint is that the latter number cannot be larger than theformer. As this constraint binds, Eq. (∗∗) must hold true at equilibrium. Eq. (∗) is guaranteedby competition between insurance companies, as each of the equilibrium contracts must makenull profits. �

Exercise 9.1. In this canonical insurance problem, suppose that there are three types of agents, H ,
M and L, distributed in proportions λH , λM and λL. Agents of type H have the highest probabilityof suffering the loss, pH > pM , while those of type L have the lowest one, pL < pM . Ex-antepreferences over consumption plans are

Uτ(x) = (1− pτ)u(x1) + pτu(x2),for agents of type τ , where u is an increasing Bernoulli index displaying strict risk aversion.a. For the case of a pooling contract, write conditions under which individuals of all types takethis contract and the insurance company breaks even.
b. For the case of separating contracts, where there is a different insurance contract for each typeof costumer, write conditions under which individuals of type M take the contract designedfor them, and the insurance company breaks even in this contract.
c. Consider now the case of “partially separating” contracts, where there is one contract intendedfor individuals of type L, and a different contract for those whose type is either M or H . Writeconditions under which individuals of the latter types choose the contract intended for them,and the insurance company breaks even in this contract.
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Exercise 9.2. A king is worried about the welfare of the elderly in his kingdom and wants tointroduce a policy that guarantees some income levels when people retire. There are three typesof individuals: A who are the aristocrats; B, who are the bourgeoisie; and C , the countrymen.Their proportions in the kingdom are λA, λB and λC . For each person of type τ , her income whenold, in the absence of a pension plan, is the random variable Wτ .A pension plan consists of a contribution made when the person is young, Γ , and the intendedguarantee that the person’s income when old will be a given random variable α . In order to dothis, the king’s policy offers a pension plan for each type, (Γτ , ατ), for τ = A, B, C . Under thisplan, the person contributes Γτ when young, and receives the shortfall ατ −Wτ when old.All individuals have the same preferences over present and future income: if they have x0when young, and a random income X when old, their utility is x0 + E [u(X )], where u is anincreasing and strictly concave cardinal utility index.
a. If the king does not want to force any of his subjects to take a pension plan, what conditionhas to be satisfied so that each individual in the kingdom voluntary participates of the policyby signing up to some plan.
b. Suppose now that, moreover, the king intends to let everyone choose freely which plan theytake, but really wants that people of type C get the income AC when old. What conditionsmust be satisfied for that to be the case? If the king also wanted to make sure that nobodyelse takes the plan intended for these people, what other conditions must be obeyed?
c. Suppose finally that, furthermore, in order to avoid a revolution, the pension plan intendedfor individuals of types A and B must be identical and that the king also wants to make surethat in expectations the sum of these two pension plans breaks even. What further conditionmust be satisfied?
Reading. The following excerpt is from an article in The Economist. Discuss it critically.

The idea behind adverse selection
is that because [the] people being
insured have more information than
their insurers about the likelihood of
an adverse event, you can’t get a mar-
ket going; only those who expect to
lose more than the premium will in-
sure themselves. Which means the
insurance company will lose money.
Which means it will raise the premi-
ums. Which means the people who
expect to lose less than the new,
higher premium will drop their cover-

age. Which means the average loss
per insured person will go up. Which
means the insurance company will
lose money. Which means it will raise
the premiums [sic]...
But these things are true of any in-
surance market. You know much
better than State Farm how often
your wife forgets to lock the door,
whether the guy in the next townhouse
likes to have a cigarette in bed with
his nightly Nembutal-and-Bombay-
Sapphire toddy, and how close
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your rottweiler comes to taking off the
postman’s leg. Since you have a bet-
ter shot of estimating the probability
of events that will require them to pay
out on your homeowner’s insurance,
in theory, this market should not ex-
ist. In fact, it does, because people
are very risk averse, and also, not so
good at calculating actuarial risk. As
long as America’s public schools con-
tinue their appalling record on math
education, adverse selection shouldn’t
be a huge problem.
The real problem is not that peo-
ple have some sort of excellent secret
knowlege about their health that will
produce adverse selection; the prob-
lem is that some people can’t afford
to pay the cost of medical care for
diseases that have already occurred.
This is no more nor less of an issue

than the fact that some people cannot
afford to replace the contents of their
home after it burns down.

That problem is exacerbated by the
lunatic structure of America’s insur-
ance market, in which most people get
their insurance through their employ-
ers; that means that people are of-
ten thrown out on the insurance mar-
ket against their will. But it is not
a "market failure"; it’s hard to think
of any market failing worse than one
in which an insurance company would
write you a policy for something that
had already happened.

The problem, then, is whether the gov-
ernment should pay the costs of those
who have these sorts of health prob-
lems. The answer of those who argue
adverse selection is “Yes”.

From: Free exchange, The Economist, Economics (February 7th, 2007) “It’s adverse, but is itselection?”
References: This material is based on Rothschild, M. and J. Stiglitz, “Equilibrium in competitiveinsurance markets: An essay on the economics of imperfect information.” The Quarterly Journal
of Economics (1976): 629-649.

A. Carvajal



Note 10

Labor markets

The second canonical example is the employee-employer relation. We now consider the extentto which informational asymmetries can distort the efficient allocation of resources in amarket. Consider, for instance, the case of a bank that is hiring an investment analyst. Supposethat, due to her skills or training, the candidate’s marginal productivity is θ ∈ [0, θ∗], and thatas a function of this productivity, her reservation salary is r(θ), for a function with r ′ ≥ 0.1
10.1. Symmetric information
To establish a benchmark, suppose that the candidate’s productivity, θ , is observable by thebank. Letting w∗ denote the salary offered by the bank, we get that for it to be optimal for thebank, w∗(θ) = θ . The candidate will accept an offer if, and only if, w∗(θ) ≥ r(θ).It follows that the bank will hire the candidate if, and only if, θ ≥ r(θ), as in Fig. 10.1. Thissolution is Pareto efficient.
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Figure 10.1: Efficient employment under perfect information.

1 Assume that the candidate’s θ is drawn from a population such that the distribution of Θ is continuous andhas as support the whole set [0, θ∗].
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10.2. Asymmetric information: adverse selection
Suppose now that the bank cannot observe the candidate’s productivity,2 while the candidateherself can. Information is now asymmetric, and each agent can condition her actions only onthe information they have. While the candidate’s decision whether to accept an offer or not willbe contingent on her productivity, via r(θ), the offer made by the bank has to be a constantwage, w .Of course, if the bank is sophisticated, which we assume, the bank will learn somethingfrom the decision of the candidate whether to accept an offer or not. An unsophisticated bank’sexpectation of a candidate’s productivity is E (Θ). For a sophisticated bank, this is the expectationonly at the beginning of the candidate’s interview. This type of bank will want to make an offerthat they will not regret if it is accepted by the candidate. Anticipating that the candidate willaccept an offer w if, and only if, w ≥ r(θ), the bank’s expectation of the candidate’s productivity
if she accepts the offer is E [Θ | r(Θ) ≤ w]. Assuming that the bank is risk neutral, the offermade to the candidate is the solution to

E [Θ | r(Θ) ≤ w] = w.

Before continuing to determine the equilibrium of this market, it is useful to understand thebehavior of the conditional expectation as a function of w . Assuming that r ′ > 0, function r isinvertible and we can write
E [Θ | r(Θ) ≤ w] = E [Θ | Θ ≤ r−1(w)]

for any w ≥ w∗ = r(0). Since r is increasing, so is its inverse and, under simple assumptions,this function too will be increasing. The exact shape of the function, however, is not easy topin down, so we will later have to consider different cases. For illustration, consider Fig. 10.2,where a possible function is drawn. Importantly, this function is bounded above at E (θ), andthis bound is reached precisely at a salary r(θ∗).In this setting, whether the market attains an efficient allocation is undetermined, as thisdepends on the shape of the bank’s conditional expectation function. Fig. 10.3 exhibits a situationwhere an equilibrium is determined. The equilibrium wage is we, which is optimal for thebank and results in a candidate working if her productivity is at θe or below, and not workingotherwise. Importantly, this result is not efficient: unlike in the benchmark case, if the candidate’sproductivity is high, θ > θe, she is not employed. This is inefficient, as her productivity is, still,above her reservation salary.This type of inefficiency is known as adverse selection, and is due entirely to the bank’simpossibility to observe the candidate’s productivity.Of course, a different shape of the conditional expectation function could lead to differentqualitative conclusions, in particular in regards to the severity of the adverse selection effect.Fig. 10.4 presents an extreme case of adverse selection, where, due to the bank’s lack of infor-mation, only the least productive candidate is ever hired. Fig. 10.5 exhibits the other extreme,where the bank makes an offer that is accepted by candidates of all productivities.3
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Figure 10.2: Expected productivity conditional on wage acceptance.
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Figure 10.3: Adverse selection: inefficient employment under imperfect information.

Finally, consider Fig. 10.6, where three salary levels are potential equilibria. Since we areassuming that the bank knows the distribution of productivities in the population, an argumentis often made that only we is an actual equilibrium, since other offers that satisfy the equalityE [θ | r(θ) ≥ w] = w need not maximize the bank’s expected surplus globally.
2 The bank knows everything else, including the distribution of Θ.3 Even in this case, the functioning of markets is not perfect: low productivity candidates are overpaid, and highproductivity ones underpaid.
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Figure 10.4: Adverse selection: full unemployment under imperfect information.
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Figure 10.5: Adverse selection: distorted remuneration under imperfect information.
Example 10.1. In the canonical problem of a labor market with asymmetric information, wherea firm is trying to hire a new employee, potential employees come from a population wheremarginal productivity, θ , is heterogeneous. In the population, there are equal fractions of poten-tial employees with θ = 0, 1, 2, 3, 4, 5. The opportunity cost of a candidate with productivity θis r(θ), with

r(0) = 0; r(1) = 0.6; r(2) = 0.9; r(3) = 1.5; r(4) = 2.5; r(5) = 4.The employee knows her productivity, but cannot make it observable to the firm.
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Figure 10.6: Adverse selection: inefficient employment under imperfect information.

a. Denote by θ̄(w) the productivity of the most productive worker who would accept an offerwith wage w . Find θ̄(w) for w = 0, 1/2, 1, 3/2, 2, 3, 4, 5.
b. For the same values of w , compute E [Θ | The candidate accepts w] .

c. Find the equilibrium wage and argue that both inefficient unemployment and distorted re-muneration occur at equilibrium.
Answer: a. By individual rationality of the workers, θ̄(w) is the largest value of θ for which
r(θ) ≤ w . For example, r(2) = 0.9 ≤ 1 < 1.5 = r(3), so θ̄(1) = 2. Similarly,

w 0 1/2 1 3/2 2 3 4 5
θ̄(w) 0 0 2 3 3 4 5 5

b. We need to find E [Θ | Θ ≤ θ̄(w)], using the distribution of productivity in the population.For instance,
E [Θ | Θ ≤ θ̄(1)] =E [Θ | Θ ≤ 2]

=Pr(Θ = 0 | Θ ≤ 2)× 0 + Pr(Θ = 1 | Θ ≤ 2)× 1+ Pr(Θ = 2 | Θ ≤ 2)× 2
= 1
3 × 0 +

1
3 × 1+

1
3 × 2

Similarly,
w 0 1/2 1 3/2 2 3 4 5E [Θ | The candidate accepts w] 0 0 1 3/2 3/2 2 5/2 5/2
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c. Equilibrium is attained when
w = E [Θ | The candidate accepts w] .

This occurs at w = 1.5. At this wage only candidates with θ ≤ 3 take the job, which leads toinefficient unemployment: people with θ = 4 and θ = 5, who reject the offer, would be moreproductive working in the firm than at their alternative. There is also distorted remuneration,as workers with θ = 0 and θ = 1 are overpaid, while those with θ = 2 and θ = 3 areunderpaid.A second equilibrium occurs at w = 1. �

Exercise 10.1. Consider the case of a firm that is hiring a new manager. The candidate’s skillsmeasured by σ ∈ [σ∗, σ ∗]. The return of the company, R , is a random variable; under a managerof skill σ , the distribution of R is Fσ . For σ > σ ′, Fσ >1 Fσ ′ .On the population of candidates, skills are distributed according to L. There is asymmetricinformation, in that each candidate knows her own σ but the firm only knows L. All agents inthis economy are risk neutral.
1. Suppose that the only alternative available to people who don’t work for the companyis to receive unemployment benefits b. Under what conditions will this firm want tohire a manager? And if such condition holds, will the manager’s remuneration reflect herproductivity?
2. Suppose now that, instead of unemployment benefits, the candidates have the option ofrunning their own businesses. For an individual of skill σ , the return of her independentbusiness is a random variable ρ, distributed according to Gσ . For σ > σ ′, Gσ >1 Gσ ′ . Writea condition under which, at equilibrium, the firm will hire low-skilled managers, whilehigh-skilled managers choose to remain independent. Argue that this may occur even ifthe return of the firm under a high-skilled manager is higher than the return she obtainsin her independent business.

Exercise 10.2. The problem of adverse selection appears not only on insurance and labor mar-kets, but on any situation where information asymmetries may be salient. The following is animportant case: Each firm in an industry is evaluating an indivisible investment project to expandits output. If a firm does not invest, its output is z > 0. The investment opportunity is risky:there is a probability that the total output is x > z; but the project can also fail, in which casethe firm’s total output is 0. There are two types of firm, L and H , which differ only in theirprobabilities of being successful: pL < pH . The proportion of L firms is λ ∈ (0, 1).The investment project costs k > 0, but it is profitable for both types, in the sense that
pτx − k > z for both τ = L,H . Each firm is risk-neutral, and its total available cash is c < k .If it chooses to invest in the project, the difference k − c has to be borrowed from (risk-neutral)banks, at an interest rate ι.

1. Find a condition that the interest rate must satisfy for the firm to repay its loan when theoutput is positive.
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2. Assuming perfect competition in financial markets, find the interest rate charged by thebanks at a potential pooling equilibrium, and argue that this rate is accepted by all L firms.
3. At that interest rate will type-H firms invest? How does the value of λ affect the conditionsunder which these firms invest?

Reading. The following excerpt is from an article in The New Yorker. Discuss it critically.
This is the Age of the Incredible
Shrinking Everything. Home prices,
the stock market, gdp, corporate prof-
its, employment: they’re all a frac-
tion of what they once were. Yet
amid this carnage there is one thing
that, surprisingly, has continued to
grow: the paycheck of the average
worker. Companies are slashing pay-
rolls: 3.6 million people have lost their
jobs since the recession started, with
half of those getting laid off in just the
past three months. Yet average hourly
wages jumped almost four per cent in
the past year. It’s harder and harder
to find and keep a job, but if you’ve
got one you may well be making more
than you did twelve months ago.

This combination of rising unemploy-
ment and higher wages seems im-
probable. But, as it turns out, it’s
what history would lead us to ex-
pect. Even during the early years
of the Great Depression, manufactur-

ing workers actually saw their real
wages rise, and wage cuts have been
scarce in every recession since. Oil
and wheat prices may rise and fall
instantaneously to reflect supply and
demand, but wages are “sticky”: even
when the economy goes bad, it takes
a lot to make them fall.
It’s not because businesses are gener-
ous that wages are sticky; it’s because
employers are worried. In part, bosses
are afraid of what economists call "ad-
verse selection": if they cut wages,
it’s the least productive workers who
would be the most likely to stay, while
the best workers would start looking
elsewhere. (Even in a weak economy,
businesses still compete for talent.) In
a 1997 study of almost two hundred
employers, the economists Carl Camp-
bell and Kunal Kamlani found that the
threat of losing their best employees
was a major reason that bosses didn’t
cut wages.

From: Surowiecki, J., “Nice work if you can get it”, The New Yorker, March 2nd, 2009; Vol. 85Issue 3, p23-23.
References: This material is based on Akerlof, G.A. “The market for ‘lemons’: Quality uncertaintyand the market mechanism.” The Quarterly Journal of Economics (1970): 488-500.
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Note 11

Screening

There are ways in which economic agents can deal with adverse selection. We now study how,in the context of adverse selection in labor markets, an employer can mitigate the inefficien-cies caused by her lack of information. In the same setup as the previous section, suppose forsimplicity that there are only two types of workers according to their productivity: θH and θL,with θL < θH . Suppose that the low-productivity workers are a proportion λ of the population,that all the agents in the economy are risk neutral, and that the reservation salary of workersof both types are null.The new dimension that we add now is the assumption that, while a person’s productivitycannot be observed, there may exist another variable that can be used to discern it. Suppose,then, that each worker can choose a level of education, e ≥ 0. To make the analysis interesting,let us assume1 that a person’s education has no effect in her productivity. Instead, suppose thatthe cost of acquiring education varies with the ability of the individual, which is measured byher productivity. Specifically, the marginal cost of an extra unit of education for an individual oftype τ ∈ {H, L} is cτ > 0, with cH < cL. The critical assumption here is that highly productiveindividuals find it less costly to acquire education,2 so the bank can use the level of educationof a potential manager to screen for her unobservable productivity.
11.1. Symmetric information
To establish a benchmark, let us first consider the case where the individual’s productivity isperfectly observable. In this case, it is easy to see that, since education does not add to acandidate’s productivity, the efficient level of education would be e = 0 for all individuals, andeach worker would receive as salary her (observed) productivity.
11.2. Asymmetric information: screening
The case that insterests us, on the other hand, requires that if a differentiated salary is goingto be offered, the separation of workers be made using information extracted endogenously, in

1 Unrealistically, I hope.
2 Hmmm...
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our case the person’s level of education.As in the problem of insurance contracts, we consider two types of equilibria: one whereevery worker is paid the same salary, and one where remuneration is differentiated.
11.2.1. Pooling equilibriumIf the bank is to offer only one contract to every candidate, it will find it optimal to pay as salarythe expected productivity of the total population,

w̄ = θ̄ = λθL + (1− λ)θH .Since education is costly and not remunerated, both type of workers choose null levels of edu-cation, eL = eH = 0.To determine whether this situation is an equilibrium, we must study whether the bank wouldfind it profitable to offer a contract that attracts highly productive individuals only. In order todo this, a bank can offer a contract (w̃, ẽ), estipulating that the salary w̃ is paid only to anindividual with education level at ẽ or above. If this contract is to be successful, it must satisfythat
w̃ − cH ẽ > w̄, (11.1)so that highly productive individuals will accept it, while
w̃ − cLẽ ≤ w̄, (11.2)to guarantee that individuals of low productivity have no incentives to take it.If we assume that the firm will choose the lowest level of salary that guarantees Eq. (11.2),we have that
ẽ =

w̃ − θ̄
cL

,which we can substitute in Eq. (11.1) to find that the required salary must satisfy that
w̃
(
1− cH

cL

)
> θ̄

(
1− cH

cL

)
.

Since cL > cH , the latter amounts, simply to w̃ > θ̄ .It follows, then, that no pooling equilibrium can exist: with only a marginally higher salaryand an appropriately chosen required level of education, a separating contract would be able toattract highly productive employees only.
11.2.2. Separating equilibriumSuppose now that the bank offers a pair of contracts that remunerate a person at one of the twopossible productivity levels, depending on her level of education. Specifically, the bank choosesa level e∗ of education, and offers the candidates the following salary:

w =

{
θL, if e < e∗,
θH , otherwise.A contract like this is known as a screening contract. For it to succeed, it must be that eachworker chooses the level of education, and hence the salary, intended for her type. This entailstwo conditions:
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1. That no highly productive individual prefer to choose the low-education salary. If a personwere to do this, her optimal level of education would be null, so the condition that isrequired is simply that

θH − cHe∗ ≥ θL,2. That no candidate with low productivity prefer to attain enough education so as to receiveas salary the higher level of productivity. This requires that
θL ≥ θH − cLe∗,since the optimal level of education would be null for a person who chooses as salary thelower productivity level.These two conditions are known as self-selection constraints, as they constitute the require-ments for the bank to be able to extract from the workers the revelation of their types.Suppose that the bank fixes the lowest level of education under which these two conditionshold.3 The two inequalities restrict the level of education so that

θH − θL
cH

≥ e∗ ≥
θH − θL
cL

.

which is feasible since θH − θL > 0 and cH < cL. The resulting level of education is, hence,
e∗ =

θH − θL
cL

.

Since education is costly, low-productivity candidates will choose eL = 0, while those withthe higher level of productivity will acquire eH = e∗, so that they can access the higher salaryat minimum cost.We still need to determine whether this pair of contracts constitutes an equilibrium, bychecking whether it is robust to deviations by the bank to a pooling contract. Before that, it isimportant to note that, even if this arrangement effectively gets the workers to reveal, throughtheir choices, their private information, adverse selection exists and the outcome is not efficient:while lowly-productive employees will chose no education and will be remunerated at theirproductivity, those with high productivity have to pay an inefficient cost to access as salary theirown productivity. This expenditure is inefficient since education has no value, by assumption ofthe model.Now, it only remains to check whether banks would find it profitable to deviate from thispair of contracts, by offering a contract that pools all workers together. If a bank were to doso, it should offer as salary θ̄ , while requiring no education from the candidate. In this setting,nobody choosing this contract would acquire any education, but for the deviation to be profitableit would need to attract candidates of high productivity, which means that
λθL + (1− λ)θH = θ̄ > θH − cHe∗.Substituting directly, this is only possible if

λ < cH
cL
. (∗)

3 This could be the result, for instance, of competition between banks, à la Bertrand.
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If Eq. (∗) fails, the pair of contracts constitutes an equilibrium. If it holds, there can be noequilibrium, since a pooling contract would upset the contracts that would form a separatingequilibrium.4 This occurs when the proportion of low-productivity individuals is small (so thatthe benefit of separating the two types is not very significant) and/or when the ratio cH /cL islarge (in which case the separation is very costly).
Example 11.1. In the context of Exercise 10.1, suppose that the company hires a consultant toimprove their recruitment results. The consultant tells them the following:

The solution here is what economists call “screening”. Since more skilled individuals
are more productive both working for the company and working independently, we
can suggest to them a voluntary application fee, φ. Then, we offer them two wages:
w∗, to those who contribute the fee; and w∗ < w∗ to those who don’t. With a correctly
chosen φ, only highly productive candidates will pay it an receive the higher salary.
And I will be happy to be paid φ for my services.

Will this screening mechanism work? Why or why not?
Answer: No, this mechanism doesn’t work. To be successful, screening requires that the actionused to screen the candidates be more costly to take for individuals of lower type. This is thecase of education, when education achievement is harder (more costly) to individuals of lowability, as the mechanism may be designed so that only high ability candidates choose to attainthe required education. Here, the fee is equally costly for all candidates, regardless of their skilltype; if a high-skill individual is willing to pay φ, then so will be a low-skill candidate and themechanism will fail to screen. �

Example 11.2. A bank is trying to hire a financial analyst from a population of economics students.The quantitative ability of a student, Θ, is distributed uniformly over the interval [0, 1]. For thebank, the marginal productivity of a hire is increasing in her quantitative ability: the marginalproduct of an individual with ability θ is, in fact, equal to θ .The final exam of a given course is meaningless from the point of view of whether a personis a good financial analyst or not, but a student with higher quantitative abilities finds it easierto get a good grade in that exam. Specifically, for an individual of ability θ , the cost of getting agrade g is (1− θ)g, for g ∈ [0, 1]. The individual’s utility is given by the difference of betweenthe wage she receives and the cost of the grade she attains.
a. If the students’ quantitative abilities were observable, what would be the equilibrium wageschedule offered by the bank?
b. Suppose that the students’ quantitative ability is unobservable, but the university is willingto reveal to the bank whether a student got a grade of at least γ in the particular exam, or

4 And we already know that a separating contract always upsets a potential pooling equilibrium.
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not. (This is known by the students when they enrol in the economics program.) The bankcan then offer a (partial) separating contract: for values w∗ > w∗,5

w(g) =
{
w∗, if g ≥ γ;
w∗, otherwise.Assume that γ > 1/2. With respect to this contract,

(i) Given w∗ and w∗, find the ability level θ∗ at which a student is indifferent between thetwo conditions in the wage contract.(ii) Still taking w∗ and w∗ as given, argue that students with ability above θ∗ strictly preferthe salary w∗ with grades γ . What grades will students with ability below θ∗ get?(iii) Given θ∗, what should the salaries w∗ and w∗ be, if the bank is to break even in thecontract?(iv) To find a contract that could be a separating equilibrium, substitute the salaries of part(c) into the threshold of part (a). Solve for θ∗, w∗ and w∗ as a function of γ only.(v) Argue that no pooling contract can upset this separating contract: there is no poolingcontract that attracts students of all abilities at a salary where the bank breaks even.
Answer: a. If the ability of the student is observed, the bank will offer her marginal productivity,so w(θ) = θ is the wage contract.
b. (i) For the indifferent individual, w∗−(1−θ∗)γ = w∗, since she will (optimally) acquire thelowest grades that qualify her for each salary. By direct computation,

θ∗ = 1− w∗ −w∗
γ (∗)

(ii) if θ > θ∗, then
w∗ − (1− θ)γ > w∗ − (1− θ∗)γ = w∗,so it follows that any student with ability above θ∗ will acquire grades γ . Any sudentbelow θ∗ will acquire null grades.(iii) For the bank to break even,

w∗ = E [Θ | Θ < θ∗] = θ∗
2 ,and

w∗ = E [Θ | Θ > θ∗] = 1+ θ∗
2 .

(iv) Substituting the two salaries into Eq. (∗),
θ∗ = 1− 1

2γ ,and, then,
w∗ =

1
2

(
1− 1

2γ

) and w∗ = 1
2

(
2 − 1

2γ

)
.
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(v) If it is not to make losses, a pooling contract would offer at most w̄ = E [θ ] = 1/2. Forit to succeed, it has to attract students of all abilities, including θ = 1. But this wouldrequire that
1
2 ≥

1
2

(
2 − 1

2γ

)
,

which is impossible if γ > 1/2. �

Exercise 11.1. Consider a competitive labor market populated by two types of workers, τ ∈ {H, L}.A worker of type τ produces θτ √e, where θτ denotes her exogenously given productivity leveland e the individual’s chosen education level. Suppose that the cost of acquiring each unit ofeducation for an individual of type τ is cτ . As in class, suppose that θH > θL and cH < cL.
a. To establish a benchmark, determine the Pareto efficient levels of education of the workers.
b. State the condition, in terms of the parameters of the model, under which a separating equi-librium (screening) cannot be sustained, if workers are intended to acquire the Pareto efficientlevels of education.
c. Suppose that the condition just stated holds, so that the efficient separating equilibrium doesnot exist. Describe a potential, second-best separating equilibrium levels of education.
d. Letting λ be the proportion of type L workers in the market, are there conditions under whichthe separating contracts just described are indeed an equilibrium?
Exercise 11.2. Consider a competitive labor market populated by two types of workers, τ ∈ {H, L}.A worker of type τ produces θτe, where θτ denotes her exogenously given productivity level and
e the individual’s chosen education level. Suppose that the cost of acquiring e units of educationfor an individual of type τ is cτe2 . As in class, suppose that θH > θL and cH < cL. Denote by λbe the proportion of type L workers in the market.
a. To establish a benchmark, determine the Pareto efficient levels of education of the workers.
b. State the condition, in terms of the parameters of the model, under which a separating equi-librium (screening) cannot be sustained, if workers are intended to acquire the Pareto efficientlevels of education.
c. Suppose that the condition just stated holds, so that the efficient separating equilibrium doesnot exist. Describe a potential, second-best separating equilibrium contract, including theself-selection constraint that it must satisfy for the L individuals.
Exercise 11.3. Consider a competitive market for student loans. Suppose that each studentborrows $15,000, which are to be repaid, with interest, if, and only if, the student is successful inan economics Ph.D. program. Suppose that that there are two types of students, τ ∈ {H, L}, whodiffer only in their probability of succeeding, pτ . As usual, let pH > pL, suppose that a proportion
λ of the students are of type L, and denote by ι the interest rate charged on the loans.
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a. Define the equilibrium interest rate in a (pooling) equilibrium, if no screening is possible.
b. Suppose now that, by exerting costly effort, an individual can improve her undergraduategrades, which are observable. For a student of type τ , the cost of getting grades γ is cτγ ,with cH < cL. Suppose, moreover, that a person’s undergrad grades have no impact on theprobability of succeeding in the program.

(i) Derive the values of the two types of loan contracts in a separating equilibrium, includingthe required grades and the relative values that cL an cH must satisfy in order thatincentive compatibility requirements are satisfied.(ii) Assuming that pL = 1/3, pH = 2/3, cL = 1 and λ = 3/4, find the critical value that cHcannot exceed if the equilibrium you just defined is to exist.
Reading. The following excerpt is from an article in The Economist. Discuss it critically.

Work over the past five years by two
economists, Dale Ballou at the Uni-
versity of Massachusetts and Michael
Podgursky of the University of Mis-
souri, suggests that the quality of
America’s teachers has more to do
with how they are paid rather than
how much. The pay of American
public-school teachers is not based
on any measure of performance (the
NEA opposes merit pay); instead, it is
determined by a rigid formula based
on experience and years of schooling,
factors that Mr Podgursky calls “mas-
sively unimportant” in deciding how
well students do. The uniform pay
scale invites what economists call ad-
verse selection. Since the most tal-
ented teachers are also likely to be

good at other professions, they have
a strong incentive to leave education
for jobs in which pay is more closely
linked to productivity. For dullards,
the incentives are just the opposite.

The data are striking: when test
scores are used as a proxy for abil-
ity, the brightest individuals shun the
teaching profession at every juncture.
Clever students are the least likely to
choose education as a major at uni-
versity. Among students who do ma-
jor in education, those with higher test
scores are less likely to become teach-
ers. And among individuals who enter
teaching, those with the highest test
scores are the most likely to leave the
profession early.

From: The Economist (August 24th, 2000) “Paying teachers more”.
References: This material is based on Spence, A.M. “Job Market Signaling.” The Quarterly
Journal of Economics (1973): 355- 74.
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Note 12

Credit markets

Obviously, adverse selection can affect other important markets. An issue of most interest ishow asymmetric information can affect financial markets, and ways in which some marketmechanisms may arise that ameliorate this problem. The intuition of the problem is the sameas in the classical models studied before, but we now concentrate in the specific context of amarket for loans. In particular, we want to determine whether the inability of a bank to observeall the details of an investment project may lead to inefficiency in this market.For this purpose, suppose that there is a continuum of investment projects, indexed by θ ∈
[θ∗, θ∗]. Parameter θ will be the riskiness type of the project, in the following sense. Let Rdenote the return of project θ , which is a random variable with distribution Fθ . In order to modelthe type of the project as its measure of riskiness, assume that E Fθ (R) = E Fθ ′ (R) for all θ and
θ ′, but Fθ >2 Fθ ′ if θ < θ ′. In words, all projects types have the same expected return, but thelower its type the less risky a project is. Importantly, let us assume that while the entrepreneurcan observe the riskiness type of her project, the bank cannot and only knows that it comes froma distribution G over [θ∗, θ∗].Assume that all projects are of the same size, in the sense that they require a loan of b > 0 tofinance them, regardless of their type. In order to get this loan, however, the owner of the projecthas to put down a collateral of c, that the bank will keep in case of default, besides the fullreturn of the funded project. Let us denote by ι the interest rate charged on the loan. Assumingthat no further punishment is imposed on a defaulted loan, it follows that the entrepreneur willchoose to default when the realization of R , which we denote by r , is such that c+ r < (1+ ι)b.Under these assumptions, it follows that the value (net profit) of the entrepreneur is

v(r, ι) = max{r − (1+ ι)b,−c},

while the profits of the bank are
π(r, ι) = min{r + c, (1+ ι)b}.

To abstract from complications, let us assume that everybody in the market is risk-neutral.Figs. 12.1 and 12.2 depict these payoff functions. Importantly, note that the possibility of defaultimplies that the entrepreneur shares with the bank bad outcomes of her project, only. Technically,notice that although both payoff functions are nondecreasing in r , the entrepreneur has a convexutility function while the bank’s is concave.
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Figure 12.1: net profit of an entrepreneur.
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Figure 12.2: profit of the bank.
Proposition 12.1. Given interest rate ι, there exists a cutoff value of riskiness, θ̃ , so that the
entrepreneur chooses to borrow and fund her project if, and only of, she is riskier than that, in
the sense that her type is θ ≥ θ̃.

Proof. The argument is fairly straightforward. Let θ̃ be such that E Fθ̃ [v(R, ι)] = 0, namely thetype of entrepreneur that is indifferent between taking the loan and funding her project, andgiving up on the project. Since θ < θ̃ implies that Fθ >2 Fθ̃ and V is convex, it follows that forriskiness below θ̃ , EFθ [v(R, ι)] < 0. �

Proposition 12.2. The cutoff type, θ̃ , is increasing in the interest rate charged by the bank.

Proof. By definition, for all ι,
0 = E Fθ̃ [v(R, ι)]
= E Fθ̃ [max{R − (1+ ι)b,−c}]

= −

∫ (1+ι)b−c
−∞ c dFθ̃(r) + ∫∞

(1+ι)b−c
[r − (1+ ι)b] dFθ̃(r)

Differentiating with respect to ι,
∂E Fθ̃ [v(R, ι)]

∂θ̃
dθ̃ −

(∫∞
(1+ι)b−c

b dFθ̃(r)) di = 0,

which means that dθ̃dι = b1− Fθ̃((1+ ι)b− c)
∂E Fθ̃ [v(R, ι)]/∂θ̃

.

By the argument used in the proof of the previous proposition, the denominator of this expressionis positive, which implies that so is the whole expression. �

Proposition 12.3. The expected profit of the bank, given the type of entrepreneur, is decreasing
in the riskiness of the project.

Proof. This is immediate: since θ < θ ′ implies that Fθ >2 Fθ ′ , and π is concave. �

Proposition 12.4. The effect of the interest rate on the expected profit of the bank is ambiguous.
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Figure 12.3: Credit rationing under perfect information.
Proof. As the bank cannot discern the type of the project, but knows that only projects abovethe threshold apply for a loan, its expected profit is

Π(ι) = E G

{E Fθ [π(R, ι)] | θ ≥ θ̃
}
= E G

{E Fθ [min{R + c, b(1+ ι)}] | θ ≥ θ̃
}
.

Differentiating,
Π ′(ι) = b

∂E G

{E Fθ [π(R, ι)] | θ ≥ θ̃
}

∂ι +
∂E G

{E Fθ [π(R, ι)] | θ ≥ θ̃
}

∂θ̃
dθ̃dι .

Since b > 0, the first summand on the right-hand side is positive. By the previous two proposi-tions, the second summand is the product of a positive and a negative numbers. �

The implication of the last proposition is important. While the demand for loans, Ld, isdecreasing in the interest rate, Ls, their supply, need not be increasing. This implies that it ispossible for the bank to prefer to ration credit to potential borrowers rather than increase theinterest rate, as in Fig. 12.3. The bank will not give loans at a rate above ι∗ and will cap itslending at L∗. At this rate, the demand for loans is L̃ > L∗, but the bank prefers not to serve thisquantity, and the standard market mechanism of increasing prices does not eliminate the excessdemand, due to its adverse-selection effect on the riskiness of funded projects.
Exercise 12.1. In the context of this problem:

1. Graph the function for the value of the entrepreneur, as a function of the realized return ofthe project, for given ι and c, and determine how changes in ι and c affect this function.
2. Use your previous answer to argue that the following is possible: the bank will offer twodifferent loan contracts (ι∗, c∗) and (ι∗, c∗), where ι∗ < ι∗ and c∗ < c∗ are chosen such thatsafer entrepreneurs choose the contract (ι∗, c∗) , while only high-risk entrepreneurs takethe (ι∗, c∗) contract .
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Exercise 12.2. Assume that (instead of commercial banks) investment banks provide the loan,and participate of the return of the project, in the following sense: the bank stipulates a cut-offvalue ρ and a profit share s < 1; if the return of the project is below the cut-off value, the bankcondones (forgives) the loan; otherwise, the bank receives a proportion s of the excess of thereturn over ρ.
1. Write expressions for the value of the entrepreneur and the profits of the investment bank, asfunctions of the cut-off value and the realized return of the project: v(r, ρ, s) and π(r, ρ, s).Draw the graphs of these two functions, for given ρ and s, as functions of the realizedreturn of the project.
2. Argue that if an entrepreneur of riskiness θ is willing to undertake the investment projectat a given ρ and s, then any entrepreneur with lower riskiness is willing to do the same.
3. Write a condition to define the “marginal” entrepreneur who is indifferent between investingand not, and argue that this marginal entrepreneur is decreasing in the share of profitscharged by the bank, s.

Reading. The following excerpt is from a column in Harper’s. Discuss it critically.
The ever-widening information imbal-
ance between consumers and credi-
tors has only made borrowers eas-
ier marks. In a Federal Trade Com-
mission study conducted last year, for
instance, nine in ten mortgage cus-
tomers examining relatively straight-
forward fixed-rate loan agreements
could not figure out the up-front costs
on the loan; half could not identify
the loan amount. Of all the borrowers
who were sold subprime mortgages in
the past five years, nearly 60 percent
would have qualified for prime mort-
gages if brokers had offered them; the
sub-prime mortgages carried so many
rate escalators, prepayment penalties,
and other traps that even would-be
prime borrowers defaulted.
It is time we created the equivalent of
a Consumer Product Safety Commis-
sion for financial products, an agency
whose purpose would be to protect

homebuyers and investors from the fi-
nance industry’s most dangerous of-
ferings. The Financial Product Safety
Commission could model itself after
the best from the consumer regulatory
agencies. For instance, the head of the
new agency would be appointed by
the president, and its staff of profes-
sionals would have civil-service pro-
tection and thereby be immune to
changing political winds. Although
the fpsc would have no hand in set-
ting prices, it would be able to re-
quire that companies reveal the true
cost of credit. This seemingly small
requirement would force into public
view essential information about terms
and risks that has long been masked
and withheld. To achieve this end, the
agency could do something as basic as
reviewing product disclosures, making
sure they were easily comprehensible
to the average reader.
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The fpsc would also “test” products
for safety before they had a chance to
reach consumers. When the commis-
sion found undisclosed fees or bait-
and-switch credit modeling, it could
allow the offender a period of time
to fix the problem, giving lenders the

opportunity to minimize government
interference. But if a lender failed
to act within, say, six months, the
agency could impose its own regu-
lations: eliminating confusing paper-
work, requiring effective disclosures,
and, when necessary, banning outright
the most dangerous traps.

From: Warren, E. and A. Warren Tyagi, Harper’s Magazine (November, 2008), “Protect financialconsumers”.
References: This material is based on Stiglitz, J.E. and A. Weiss. “Credit rationing in marketswith imperfect information.” The American Economic Review 71.3 (1981): 393-410.
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Note 13

Investment

Adverse selection also has macroeconomic implications. We now study how asymmetric infor-mation can affect the levels of investment in an economy. We will consider, again, a modelwith adverse selection, where firms needs to resort to credit markets to fund their investmentprojects. In this setting, it is natural that information asymmetries make external funding moreexpensive than internal funding, and can lead to extreme forms of inefficiency in the market.
13.1. A cash-constrained firm

Consider the case of a firm that is evaluating an indivisible investment project to expand itsoutput. If the firm does not invest, its output is z > 0. The investment opportunity is risky: ifthe firm undertakes it, there is a probability p that the total output is x > z; but the project canalso fail, in which case the firm’s total output is 0. The investment project costs k > 0, but it isassumed to be profitable, in the sense that px − k > z.The firm is risk-neutral, and its total available cash is c < k . If it chooses to invest inthe project, the difference, k − c has to be borrowed in financial markets. Let ι denote theinterest rate charged by (risk-neutral) banks. Assuming that the banks cannot enforce collateralrequirements, nor any other form of penalty for defaulting on loans, the firm will repay its loanonly only if the output is positive and
x ≥ (k − c)(1+ ι).

Under the usual argument of perfect competition in financial markets,1 the interest ratecharged by the bank is
ι = 1

p − 1 > 0,

which is accepted by the firm, under our assumption that the investment project is profitable.This outcome is efficient, as profitable investment projects get funded.
1 And, for the sake of simplicity, ignoring the bank’s funding costs.
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13.2. Adverse selection
Suppose now that there are two types of firm, L and H , which differ only in their probabilities ofbeing successful in the investment project: pL < pH . The proportion of L firms is λ ∈ (0, 1). Wemaintain the assumption that the investment project is profitable for both types, so pLx − k > z.Since the decision to repay is made ex-post, the condition under which repayment occurs isthe same for both types: x ≥ (k − c)(1+ ι).
13.2.1. Pooling equilibriumIf a contract that is taken by both types of firm, the probability of success considered by thebank is p̄ = λpL+(1− λ)pH . As before, equilibrium in the credit market implies that the interestrate is ῑ = 1/p̄− 1.Firms of type τ will accept this contract only if

z ≤ pτ [x − c − (1+ ῑ)(k − c)] + (1− pτ)(−c)

= pτx −
pτ
p̄ (k − c) − c

= pτx − k −

(
pτ
p̄ − 1

)
(k − c),

where the second equality comes from substituting ī, and the third one from adding and sub-tracting k . This is, only if
pτx − k −

pτ − p̄
p̄ (k − c) ≥ z. (13.1)

Since pLx − k > z , this condition is granted for type L firms, as pL < p̄. For H-type firms, thesame need not be true, even though pHx − k > z, since pH > p̄.If Eq. (13.1) holds true for both types of firm, a pooling equilibrium exists. Otherwise, type-Hfirms are not willing to borrow at the pooling interest rate, and pooling cannot be sustained atequilibrium. The intuition is simple: under pooling, the bank charges a higher interest rate to“good” firms, relative to what it would charge them under perfect information. If this increaseis sufficiently high, these firms would choose not to borrow, even though the project would beprofitable at the right interest rate. For type-L firms, this effect does not occur, and the poolinginterest rate is lower.
13.2.2. Separating equilibriumLet us now assume that

pHx − k −
pH − p̄
p̄ (k − c) < z, (13.2)

so that pooling is impossible at equilibrium.Since we are assuming that collateral requirements are not enforceable, banks have no wayof screening firms: if two different interest rates were offered, all firms would take the lowestone. The only possible separating equilibrium is one where only L firms borrow, so that theinterest rate is
ι∗ = 1

pL
− 1 > ῑ.
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Since the project is profitable for L firms, they accept this interest rate. For it to be anequilibrium, we must also check that H firms prefer not to invest:2

pHx − k −
pH − pL
pL

(k − c) < z.

But, by construction,
pH − pL
pL

=
pH
pL

− 1 > pH
p̄ − 1 = pH − p̄

p̄ ,

so the latter condition is implied by Eq. (13.2).
13.3. Welfare and efficiency
In this particular setting existence of equilibrium has not been a problem. A pooling equilibriumis possible if the difference between the probabilities of success is not too large, and when thiscondition fails a separating equilibrium is guaranteed to exist.This does not mean, in any way, that information asymmetries are not problematic. Whenthe pooling equilibrium holds, adverse selection is not too severe, but some firms are charged ahigher interest rate than the one implied by their inherent risk. More importantly, in a separatingequilibrium the firms that are most likely to have successful projects choose not to invest.From a macroeconomic perspective, note that the condition under which the pooling equi-librium fails, Eq. (13.2), depends on the value of the loan that the firm needs to fund invest-ment projects. A policy under which this value is lower would ameliorate the adverse selectionproblems, as would a policy that facilitates screening of low-probability firms, for instance theintroduction of collateral requirements.
References: This material is based on Bernanke, B. and M. Gertler. “Agency costs, net worth,and business fluctuations.” The American Economic Review (1989): 14-31.

2 Otherwise, banks would be making strictly positive expected profits, which contradicts the idea that theyexhibit free entry and perfect competition.
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Part III

Incentives





Note 14

Agency theory

Often, an economic agent needs to leave important decisions in the hands of other agents.Our goal now is to study situations in which an decision maker delegates to someone elsethe undertaking of actions that affect her well-being. Situations like this are ubiquitous, but themain example is the interaction between the owner of a firm and the firm’s manager. The interestof the problem arises when the goals of the person who delegates are not perfectly aligned withthose of the agent who receives the mandate to act.
14.1. Perfect information
The canonical agency problem is the following. A principal is to delegate the undertaking of anaction to an agent. The set of actions that are possible for the agent is A, with representativeelement a. There is randomness in this setting, represented (for the moment) by a space ofstates of nature S, with representative element s.In state of the world s, if the agent’s action is a, the principal realizes an output x(a, s).From this output, the principal remunerates the agent. Suppose that A ⊆ R and S ⊆ R, and, asa convention, assume that the output is increasing in both a and s. The agent derives utility ofher remuneration, φ, and disutility from undertaking higher levels of the action; her preferencesare represented by

v(φ, a), with ∂v
∂φ > 0 and ∂v

∂a < 0.The principal, on the other hand, only cares about his net output, and his preferences are u(x−φ),with u ′ > 0.For the moment, let us suppose that the agent’s remuneration is contingent on the action andthe state, and is given by a function f (a, s). Taking this function as given, the agent’s problem is
max
a∈A

E {v [f (a, S), a]},

where the random variable over which the expectation is taken is the state of the world, S . Theprincipal, on the other hand, chooses the remuneration function so as to solve
max

f :A×S→RE {u[x(a, S) − f (a, S)]}.1
1 It may be useful to emphasize that the choice variable in this problem is the whole function f : A × S → R.
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In terms of modelling the interaction between the two individuals, the previous problem needsto be better specified: the critical issue here is how the principal believes that the agent willrespond to the incentives introduced to her problem by the remuneration function. Even thoughwe will not made this feature explicit, it is useful to think that the remuneration fee is chosenby the principal first, taking into account how the agent will optimally respond to it later.2 Thismeans that the principal faces two constraints in his optimization problem:1. It seems plausible to assume that the agent has alternative activities she can engage in.The principal must, then, guarantee that the fee gives the agent at least the same expectedutility as those alternatives, for otherwise she would not participate in the contract. Thisconstraint is known as individual rationality.
2. Given the fee schedule, since it is the agent who chooses the action, the principal musttake into account how the action that the agent will choose responds to the schedule. Thatis, when choosing the fee function, the principal must evaluate her objective function at theaction that solves the agent’s optimization problem, given that function. This constraint isreferred to as incentive compatibility.At first glance, it may seem that the incentive compatibility constraint captures all that isinteresting about this problem. While this constraint is, to a large extent, the crux of the problem,there is another aspect of it that is important too, and which is less explicit. Note that we aredealing with two agents who are facing exposure to a common risk. In this case, an embeddedproblem is the one of how these agents will share this risk. To concentrate on this problem, wewill first ignore the action of the agent altogether.

14.1.1. Optimal risk sharingSuppose that the problem involves no action by the agent. Abusing notation in an obvious way,the principal’s problem is
max
f :S→R {E {u[x(S) − f (S)]} : E {v [f (S)]} ≥ v∗} ,

where v∗ denotes the agent’s reservation utility,3 which has to be guaranteed by the principalthrough the individual rationality constraint.Denoting by G the distribution of random variable S , we can rewrite this problem as
max
f :S→R

{∫
u[x(s) − f (s)] dG(s) : ∫v [f (s)] dG(s) − v∗ = 0

}
,

where we have used the monotonicity of function u to write the individual rationality constraintas an equality. The first-order conditions of this problem are that for all state of the world s,
u ′[x(s) − f (s)] = λv ′[f (s)], (14.1)

We will next address the conceptual issues raised by this, but there are technical problems that arise here too. Inparticular, the solution to this optimization problem will require techniques of dynamic optimization, even thoughthe problem is static, where we use the state of the world as index of the problem, instead of time.2 From a modelling point of view, this makes things very simple. It rules out, however, the possibility that thefee be negotiated, and assumes that the principal can commit to the schedule.3 Namely, the highest expected utility she can attain in an alternative contract.
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for some number λ > 0.4 Differentiating with respect to s, we obtain that

f ′(s) = u ′′[x(s) − f (s)]x ′(s)
λv ′′[f (s)] + u ′′[x(s) − f (s)] .It is immediate from the latter expression that:1. If both the principal and the agent are strictly risk averse, then 0 < f ′(s) < x ′(s), whichimplies that they share risk. To find the optimal fee schedule, the latter differential equationhas to be solved, using the individual rationality constraint as terminal condition.

2. If the principal is risk neutral, then f ′(s) = 0 and the optimal schedule is simply f (s) =
v−1(v∗).3. If the agent is risk neutral, then f ′(s) = x ′(s) and f (s) = x(s) − φ̄, where φ̄ is chosen soas to guarantee the individual rationality constraint.Intuitively, if one of the the two parties in the contract is risk neutral and the other one riskaverse, the optimal contract transfers all the risk to the risk-neutral one. If, on the other hand,they are both risk averse, they optimally share the risks implicit in the environment.

14.1.2. Pareto efficiencyWe now reintroduce the action of the agent. To make our analysis a little simpler, we assumethat
∂2v
∂a ∂φ = 0,

namely that the action and the income of the agent enter her utility function in a separablemanner.5If the principal chose the action, his problem would be, simply:
max

a∈A,f :S→R {E {u[x(a, S) − f (S)]} : E {v [f (S), a]} ≥ v∗} .

We can rewrite this problem as
max

a∈A,f :S→R
{∫
u[x(a, s) − f (s)] dG(s) : ∫v [f (s), a] dG(s) − v∗ = 0

}
,

which has as first-order conditions that there exist a positive number λ such that for each statefor the world, s,
u ′[x(a, s) − f (s)] = λ ∂v∂φ [f (s), a],while ∫

u ′[x(a, s) − f (s)]∂x∂a(a, s) dG(s) + λ ∫ ∂v∂a [f (s), a] dG(s) = 0,

4 Technical aspects of this solution are found in Appendix A1.5 The assumption of risk aversion, which is maintained, is now that
∂2v
∂φ2 ≤ 0.
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in addition to the individual rationality constraint. Since we are assuming that the agent’spreferences are separable, we can write the latter condition as
E {u ′[x(a, S) − f (S)]∂x∂a(a, S)

}
+ λ∂v∂a [0, a] = 0.

Substituting from the first condition, the latter becomes, simply,
E { ∂v∂φ [f (S), a]∂x∂a(a, S)

}
= −

∂v
∂a [0, a], (14.2)

which is very intuitive: it equates the marginal disutility of the agent’s action with her marginalutility from getting the total marginal income of such action. This intuition suggests that theoutcome of this optimization problem is Pareto efficient, which is indeed the case.Of course, this case is simply a theoretical benchmark, as in reality it is the agent, notthe principal, who chooses the action. Moreover, if the principal cannot separately observe theaction and the state of the world, he can only make the fee depend on the (observed) output herealizes, so we now write the contract as f (x). All this implies that the action that is chosen isthe solution to the problem max
a∈A

E {v [f (x(a, S)), a]},which has as first-order conditions that
E { ∂v∂φ [f (x(a, S)), a]f ′[x(a, S)]∂x∂a(a, S)

}
= −

∂v
∂a [0, a]. (14.3)

Comparison between Eqs. (14.2) and (14.3) yields intuition about the latter: when left to her,the agent only internalizes the part of the marginal product that is transferred to her via thefee, as opposed to the whole benefit of a higher action. It may be tempting to conclude that inorder to restore efficiency the principal could offer a schedule where f ′(x) = 1 for all x . This,however, leaves all the risk in the hands of the agent, and need not be efficient if she is not riskneutral, as we saw before.
14.2. Imperfect information: moral hazard
We now study the problem where the principal has to satisfy the incentive compatibility con-straint in his design of the optimal fee schedule. For technical reasons, it will be convenient toget rid of the state of the world in our notation. Instead, we will model the uncertainty throughthe probability distribution of the outcome, and will consider the effects of the agent’s actiondirectly over this distribution.Formally, let X denote the output, which is now a random variable, and suppose that itsdistribution depends on the action taken by the agent. That is, letting G : R × A → [0, 1], weunderstand that G(x, a) is the probability that X ≤ x , when the action of the agent is a. Keepingwith our understanding that the action improves the output, we assume that G is decreasing in
a, so that the higher the action of the agent, the better the distribution of the output in the senseof first-order stochastic dominance.The principal’s problem is, with this notation,max

a∈A,f :R→R
{∫
u[x − f (x)]g(x, a) dx : ∫v [f (x), a]g(x, a) dx − v∗ = 0, a ∈ A(f )

}
,
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where

A(f ) = argmaxa ′∈A ∫v [f (x), a ′]g(x, a ′) dx. (14.4)We have, hence, introduced the incentive compatibility constraint, as given by its definition.Not surprisingly, this way of modelling the incentive compatibility constraint is very difficult tohandle, so a technique has been devised by which we substitute this form of the condition by thefirst-order conditions that characterize the solution of the optimization problem of the agent.6From Eq. (14.4), these conditions are that∫ ∂v
∂a [f (x), a]g(x, a) dx + ∫ v [f (x), a]∂g∂a(x, a) dx = 0,

or, using separability of the agent’s preferences (as before), that∫
v [f (x), a]∂g∂a(x, a) dx = −

∂v
∂a [0, a].Letting λ be the multiplier of the individual rationality constraint, and µ the one of theincentive compatibility constraint, the first order conditions of the principal’s problem are: first,that for all x ,

u ′[x − f (x)]
∂v [f (x), a]/∂f = λ+ µ∂g(x, a)/∂ag(x, a) ; (14.5)

while ∫
u[x − f (x)]∂g(x, a)∂a dx = −µ dda

{∫
v [f (x), a]∂g∂a(x, a) dx + ∂v

∂a [0, a]
}
. (14.6)

To see that we have a complete system to solve, note that Eq. (14.5) gives sufficiently manyconditions to solve for f (x), for each x , while for the other three variables, a, µ and λ, we haveEq. (14.6), the individual rationality constraint, and the incentive compatibility constraint. Notealso that λ > 0 is required for optimality (given monotonicity u ′ > 0), but we do not know thesign of µ, as the version of the individual rationality constraint we have used is an equality.Lemma 1. µ > 0.

Proof. The left-hand side of Eq. (14.6) is positive, since higher a induces a first-order stochasticdominance improvement in G(·, a) and u ′ > 0. On the right-hand side, µ multiplies the secondderivative of the agent’s objective function with respect to her action. If the first-order conditionscharacterize the agents incentive compatibility constraint, it must the that the second-orderconditions hold, so this second derivative must be negative. �

Theorem 14.1. The optimal fee schedule fails to display optimal risk sharing.

Proof. Recall that optimal risk sharing requires, as in Eq. (14.1), that the ratio of u ′[x− f (x)] and
∂v [f (x), a]/∂f be a constant (independent of x). By Eq. (14.5) and Lemma 1, this requires thatthe ratio of ∂g(x, a)/∂a and g(x, a) be a constant too. Suppose that this is the case, and let κdenote this constant, so that ∂g(x, a)/∂a = κg(x, a). Integrating with respect to x ,∫ ∂g

∂a(x, a) dx = κ
∫
g(x, a) dx.

6 See Appendix A2 for more on this approach.
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The left-hand side of this equality is null, while ∫ g(x, a) dx = 1, so κ = 0. But, then,
∂g(x, a)/∂a = 0, which contradicts our assumptions. �

We can, in fact, say more about the distortions to optimal risk sharing, with a simple intuitionthat is highlighted by the following result.
Corollary 14.1. Let f ∗ : R→ R be such that, for all x,

u ′[x − f ∗(x)] = λ∂v∂f [a, f
∗(x)],

so that it shares risks efficiently. Then, f (x) ≥ f ∗(x) if ∂g(x, a)/∂a ≥ 0, while f (x) < f ∗(x) if
∂g(x, a)/∂a < 0.

Proof. From Eq. (14.5), if ∂g(x, a)/∂a ≥ 0,
u ′[x − f (x)]
∂v [f (x), a]/∂f = λ+ µ∂g(x, a)/∂ag(x, a) ≥ λ = u ′[x − f ∗(x)]

∂v [a, f ∗(x)]/∂f .Since u ′′ < 0 and/or ∂2v [a, f ∗(x)]/∂f 2 < 0, the conclusion follows. �

This last result illustrates that the deviations from optimal risk sharing are intended to givethe agent incentives to choose an action that is more convenient. Since a higher action induces,overall, a first-order stochastic dominance improvement in the distribution of output, the outcomesthat gain density are “better” than those that lose it. For this outcomes, the principal offer higherremuneration than what would be efficient from the point of view of risk sharing.Finally, we want to study the shape of the fee function. Before we do that, it is necessary toassume the following property, which is referred to as the monotone likelihood ratio:
∂
∂x

(
1

g(x, a)
∂g
∂a(x, a)

)
> 0.

The intuition of this property is that, since the principal does not observe but infers the action,the property says that the higher the output he observes, the higher the action he infers. Thisintuition, unfortunately, is not guaranteed under the assumptions we had made before. For moreon the intuition, see below.
Theorem 14.2. The optimal fee schedule is increasing.

Proof. From Eq. (14.5), differentiating with respect to x , we have that
u ′′[1− f ′(x)]
∂v/∂φ −

u ′f ′(x)(∂2v/∂φ2)
(∂v/∂φ)2 = µ ∂∂x

(
∂g/∂a
g

)
,

where we have ignored the arguments of all functions but f . Immediately,
f ′(x) =

(
u ′′

∂v/∂φ +
u ′(∂2v/∂φ2)
(∂v/∂φ)2

)−1( u ′′
∂v/∂φ −

∂
∂x

(
∂g/∂a
g

))
.

The result is immediate under the monotone likelihood ratio. �
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Exercise 14.1. An entrepreneur has to take a loan of amount L to fund investement on a riskyproject. Unlike in the cases seen in class, assume now that it is the entrepreneur that designsthe repayment contract for the loan. The return of the project, denoted by X , is observable, andthe repayment contract can be made contingent on it: R(x) denotes how much the entrepreneurrepays when the project has returned x .Return X is a random variable, whose distribution is influenced by the effort exerted bythe entrepreneur in running her company: the probability that X ≤ x , when the effort of theentrepreneur is e, is F (x, e). Assume that ∂F/∂e < 0, so that higher levels of effort induce a first-order stochastic dominance improvement in the return of the project. Effort is not observable, andfor the entrepreneur the cost of exerting effort e is φ(e), which is assumed to be an increasingand convex function.Suppose that both the entrepreneur and the lender are risk neutral, that the lender onlyaccepts the contract if his expected net return is non-negative, and that, for institutional reasons,the contract has to obey a limited liability constraint: that 0 ≤ R(x) ≤ x for all x . Suppose alsothat the distribution of the return of the project satisfies the monotone likelihood ratio property,so that

1
f (x, e) ·

∂f
∂e(x, e)is increasing in x , for all e

1. Write the individual rationality constraint of the lender.
2. Ignoring for the moment the limited liability constraint, and assuming that the entrepreneurcan commit to a level of effort, white her optimization problem and find its first-ordercondition.
3. Introducing the limited liability and incentive compatibility constraints, re-write the en-trepreneur’s problem. Show that the optimal solution is of the form

R(x) =
{
x, if x ≤ x̃ ;
0, otherwise.

for some level x̃ of return.
14.3. Validity of the first-order approach
Recall that in our solution, instead of using the original incentive compatibility constraint,Eq. (14.4), we are requiring that

∂
∂a

∫
v [f (x), a ′]g(x, a ′) dx.

In words, this means that, instead of using the agent’s optimal action, we are saying that theprincipal foresees that the agent will choose a critical point of her objective function.Of course, this could mean that the principal thinks that the agent will choose a minimum,or a saddle point of her objective function, which would be (grossly) wrong. The conditions thatwe have imposed so far (risk aversion, separability, first-degree stochastic dominance and the
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monotone likelihood ratio) do not suffice to rule out this possibility. We still need to imposea second-order condition on how the action affects the probability distribution of outcomes.Recalling that ∂G/∂a < 0, it is natural that the required condition is that ∂2G/∂a2 > 0, namelythat the improvements on distribution occur at a diminishing rate.
14.4. The monotone likelihood ratio
To see the intuition of this condition more clearly, it is useful to consider a discrete case.Suppose that there are only two outcomes, x∗ > x∗, and two actions a∗ > a∗. In this case,
g(x, a) is the probability that action x occurs when the action is a, so that the odds of highoutput, given action a, are g(x∗, a)/g(x∗, a). These odds measure the likelihood of high outputrelative to low output.The monotone likelihood ratio, in this case, is simply that these odds improve with the higheraction:

g(x∗, a∗)
g(x∗, a∗)

> g(x∗, a∗)
g(x∗, a∗)

.

This expression is equivalent to
g(x∗, a∗)
g(x∗, a∗)

> g(x∗, a∗)
g(x∗, a∗)

,

which can be approximated, to a first order, by
g(x∗, a∗) + (a∗ − a∗)[∂g(x∗, a∗)/∂a]

g(x∗, a∗)
> g(x∗, a∗) + (a∗ − a∗)[∂g(x∗, a∗)/∂a]

g(x∗, a∗)
,

or, after simplification,
1

g(x∗, a∗)
∂g
∂a(x

∗, a∗) >
1

g(x∗, a∗)
∂g
∂a(x∗, a∗).This is analogous to our continuous expression:ddx

(
1

g(x, a)
∂g
∂a(x, a)

)
> 0.

Reading. The following excerpt is from an article in Harper’s. Discuss it critically.
We must change how financial execu-
tives are personally compensated. We
should require that stock options be
subject to “expensing” (a more trans-
parent accounting that makes clear
their full costs). The present stock-
option payment structure encourages
CEOs to take actions that bloat the

short-term reported profits of the firm,
thereby inflating the share price, and
everyone (except the executives in the
know) eventually loses as a result.
Their pay must be based on long-term
performance, and they should share
the losses, not just the gains.
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Certain masterminds of Wall Street
exhibited great ingenuity in creating
new, highly complex products capa-
ble of evading accounting rules and
taking full advantage of the hous-
ing frenzy. But as they were get-
ting rich off these innovations, they
failed to design products that help re-
duce the risks faced by most people in
the housing market. Mortgages that
would make it easier for Americans to
keep their homes as interest rates rise

or the economy spirals downward can
be developed. But those in the finan-
cial sector have been fixated on their
own annual bonuses.

Adam Smith argued that in serving
their own interests individuals were
led “as if by an invisible hand” to serve
the interests of society as a whole.
But once again we see that only with
the right re- wards can these interests
actually be joined.

From: Stiglitz, J., “Realign the interests of Wall Street”, Harper’s Magazine, March 2008.
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Appendix: Math

State spaces and probabilitiesA state of the world is a comprehensive description of the status of all the contingencies that may affectan individual, or a group of people, but which are exogenous to them. The state space is the universe ofall states of nature. An event is a collection of states of nature—that is, a subset of the state space.Let S be a state space, with states denotes by s ∈ ∫. We will focus on two types of state space. Ifthe state space is finite, we write it in the general form S = {1, 2, . . . , s̄}. Alternatively, in some cases thestate space will be an interval of the real line, of the form S = [0, s̄].If the state space is finite, a probability distribution is a vector p = (p1, p2, . . . , ps̄) ≥ 0 such that
s̄∑
s=1

ps = 1.

If it is an interval, a probability distribution is a function p : S → R+ such that∫ s̄
0
p(s) ds = 1.

The interpretation is simple. If the state space is finite, the probability that an event E realizes is
Pr(E) =∑

s∈E
ps;

if the space is an interval, it is Pr(E) = ∫
E
p(s) ds,

assuming that the integral exists (which it may not, for some E ⊆ S, in which case such E is not consideredan event).
Random variablesGiven a state space S, a random variable is a function X : S → R. The interpretation is that when stateof nature s realizes, the variable of interest takes the value X (s). If the state space is finite, the randomvariables defined on it are said to be discrete; if the space is an interval, any the random variable whoserange is also an interval is said to be continuous.
Distribution, probability and density functionThe distribution of random variable X is the function F : R→ [0, 1] defined by

F (x) = Pr(X ≤ x) = Pr({s ∈ S | X (s) ≤ x}).

If random variable X is discrete, it can only take finitely many values. Suppose that the range ofrandom variable X is the set {x1, x2, . . . , xN}, with x1 < x2 < . . . < xN . Then, the probability function of Xis the function f : R→ [0, 1] defined by
f (x) =


F (x1), if x = x1;
F (xn) − F (xn−1), if x = xn for some n = 2, 3, . . . N ;

0, elsewhere.
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It is true, by construction, that f (x) = Pr({s ∈ S | X (s) = x}), which is why the function receives its name.In this case, the distribution function is also referred to as cumulative probability function, or cpf.Suppose now that the random variable is continuous, and let [x, x̄] be its range. If the distribution of
X is differentiable, we call its first derivative the density function of X . More precisely, such function is
f : R→ [0, 1] defined by

f (x) =
{
F ′(x), if x < x < x̄ ;
0, elsewhere.

By construction
Pr(x∗ ≤ X ≤ x∗) = ∫ x∗

x∗
f (x) dx,

but f (x) is not the probability that X will take the value x (which is null). Instead the density functionmeasures the intensity at which the probability of an event increases if a neighborhood of the correspond-ing state is included in the event. In the case of continuous random variables, the distribution function isalso called cumulative density function or cdf.
Moments of a random variable
Let X be a random variable with distribution F , and let g : R → R. Obviously, Y = g(X ) is a randomvariable too.If X is discrete and its range is {x1, x2, . . . , xN}, we define the expectation of Y as

E [Y ] =
N∑
n=1

g(xn)f (xn),

where f is the probability function of X . In terms of the fundamental state space,
E [Y ] =

s̄∑
s=1

g(x(s))ps.

The expectation of X itself, E [X ] =
∑N
n=1 xnf (xn) is also known as its mean.If X is continuous and its range is [x, x̄], we define the expectation of Y as
E [Y ] =

∫ x̄
x
g(x)f (x) dx,

where f is the density function of X , assuming that the integral exists.In any case, the variance of random variable X is defined as Var [X ] = E [(X − E [X ])2] . This numberis always non-negative. It is zero when, and only when, the variable takes one value with probability 1,in which case it is said to be deterministic or degenerate.The expectation of a random variable is also known as its first moment, while its variance is oftencalled its second central moment. Important properties of these numbers are:
Theorem. Let X be a random variable with expectation E [X ] = X̄ and variance Var [X ] = Σ. Then, for
any constants α and β, E [αX + β] = αX̄ + β and Var [αX + β] = α2Σ.

In general, unless g(x) = αx + β , E [g(X )] , g(E [X ]).
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Figure App.1: A concave function
Concave and convex functionsLet I be an interval on the real line. Function f with domain I is said to be concave if for all distinctpoints a and b in I , and for all numbers 0 < θ < 1, it is true that

f (θa+ (1− θ)b) ≥ θf (a) + (1− θ)f (b). (∗)It is said to be convex if for all distinct points c and d in I , and all numbers 0 < θ < 1,
f (θc + (1− θ)d) ≤ θf (c) + (1− θ)f (d)) (∗∗)Consider the points A = (a, f (a)) and B = (b, f (b)) in Fig. App.1. As we let θ range from 0 to 1, wecan obtain any x = θa + (1 − θ)b between a and b. The straight segment connecting A and B consistsof the points with coordinates
(θa+ (1− θ)b, θf (a) + (1− θ)f (b))for 0 ≤ θ ≤ 1. Now, fix any point x between a and b. The rhs of the inequality in (∗) is the verticaldistance from the horizontal axis to the straight segment. The vertical distance to the curve is the valueof the function evaluated at x̄ , namely the lhs of the inequality. Concavity is the requirement that thelatter distance be at least as much as the former, which is to say that the straight segment cannot beabove the graph of the function, as in Fig. App.1Function f is strictly concave if Eq. (∗) is always satisfied with strict inequality, and strictly convex ifEq. (∗∗) is always satisfied with strict inequality.Note that given a function f , if we let function g be defined by g(x) = −f (x), then f is (strictly)concave if and only if g is (strictly) convex. More importantly, suppose that f is continuous in the interval

I and twice differentiable in the interior of I . Then,
f is concave on I ⇔ f ′′(x) ≤ 0 for all x in I
f is convex on I ⇔ f ′′(x) ≥ 0 for all x in I

f is strictly concave on I ⇐ f ′′(x) < 0 for all x in I
f is strictly convex on I ⇐ f ′′(x) < 0 for all x in I

Partial differentiationIf z = f (x, y), then ∂z/∂x is the derivative of f (x, y) seen as a function of x , when y is held constant, while
∂z/∂y is the derivative of f (x, y) seen as a function of y, when x is held constant. Formally,

∂z
∂x =

∂f
∂x (x, y) = lim

d→0 f (x + d, y) − f (x, y)dA. Carvajal
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and, similarly,

∂z
∂y =

∂f
∂y(x, y) = lim

d→0 f (x, y+ d) − f (x, y)
dprovided that the limits exist.A very useful result, known as the chain rule is that if z = f (x, y) with x = g(t, s) and y = h(t, s),then

∂z
∂t =

∂z
∂x
∂x
∂t +

∂z
∂y
∂y
∂tand

∂z
∂s =

∂z
∂x
∂x
∂s +

∂z
∂y
∂y
∂sAlso given the function z = f (x, y), if we fix a constant c and ∂z/∂y , 0, then the equation f (x, y) = c

defines implicitly a function y(x) with
y ′ = −

∂z/∂x
∂z/∂y.This result is known as the implicit function theorem.

Calculus of variationsSuppose that we have to solve the variational problem
max

x:[t∗,t∗]→R
∫ t∗
t∗
I[x(t), ẋ(t), t) dt,

subject to x(t∗) = x∗ and x(t∗) = x∗. This problem is different from the standard constrained optimizationproblem is that the control is a function, so the objective is an functional, not a function.The Euler equation for this problem is that. at all t ∈ [t∗, t∗],
∂I
∂x −

ddt
(
∂I
∂ẋ

)
= 0.

If the integrand is autonomous, in the sense that I does not depend on ẋ , the Euler equation reduces to
∂I/∂x = 0, which is the equation we used in the text.
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