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1
Preliminary concepts

1.1 Some Useful Notation

The following notation, which is standard in mathematics, will be used through-
out these lecture notes: the symbol ∃ means there exists; the symbol ∀ means for all;
the symbol : will be used to mean such that.1 1 Soon we will introduce an alternative

notation for such that, which we will
use, for clarity, in particular cases.Example 1.1.1. The statement ∀x 6= 0,∃y 6= 0 : y · x = 1 means that for every

number x, different from zero, there exists some number y, also different from
zero, such that the product y · x equals 1.

The symbol ⇒ means implies. For example, A ⇒ B is shorthand for saying that
statement A is a sufficient condition for B (and B a necessary condition for A). The
symbol ⇔ means if, and only if. For instance, A ⇔ B means that statements A and
B are equivalent. The symbol ∧ will mean and, whereas ∨ will mean or. The symbol
¬ will be used to negate a statement. In some cases, we will use parenthesis to clarify
the notation.

Example 1.1.2 (The Contrapositive Principle). (A⇒ B)⇔ (¬B⇒ ¬A).

Example 1.1.3. ¬(A∧B)⇔ (¬A∨¬B), while ¬(A∨B)⇔ (¬A∧¬B).

The Contrapositive Principle is very useful for mathematical proofs. A closely re-
lated method of proof is the one of arguments by contradiction, in which, in order to
show that A⇒ B, one shows that (A∧¬B) is impossible.2

2 These are alternatives to the method
of direct proof, in which in order to
prove A ⇒ B one finds collection
of statements (whether definitions, ax-
ioms or previously proven theorems)
of the form Am−1 ⇒ Am, for each
m ∈ {1, . . . ,n}, such that A0 =A and
An = B. Then, one has the following
reasoning:

A =A0⇒A1⇒ . . .

⇒An−1⇒An = B.

We take the natural numbers as preliminary of our theory, and denote their collection
by N = {1, 2, . . .}. Historically, the existence of these numbers has been taken for
granted, for it was «natural» for people to use them to count.3

3 Other numbers – namely 0, the neg-
ative integers, the rational numbers,
the irrational numbers and the com-
plex numbers – were more problem-
atic, even controversial, and had to be
constructed on the basis of the natural
numbers.

1.2 Set Theoretical Concepts

By set, we mean a collection of objects, which are called the set’s elements. Of
course, this is not a bona fide definition, since the concept «collection» has not been
defined either. Rather that trying to define a collection, we will take the concept of
set as a primitive of our theory. The idea that is important, though, is that a set is
completely defined by its elements, no matter what means one uses to describe them.

Following standard notation, we use x ∈ X to denote that object x is an element of
set X.4 Also, we use | to signify such that in the definition of a set.

4 This statement is also read as «x be-
longs to X.»
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Example 1.2.1 (The Archimedean Property for N). ∀x ∈N,∃y ∈N : y > x.

Example 1.2.2. We can define the set X as the subset of elements of set N that
are greater than some given y, by saying that X = {x ∈ N | x > y}. Or, we can
write the set Y = {1, 4, 9, 16, 25, . . .} as Y = {y ∈N | ∃x ∈N : x · x = y}.

Definition. The empty set, ∅, is the set that contains no elements.5 5 Notice that we say “the empty set”,
rather than “an empty set”. The reason
is that, since a set is completely defined
by its elements, there exists only one
empty set, no matter how one ends up
finding it!

We say that X ⊆ Y whenever x ∈ X ⇒ x ∈ Y. When this is the case, we say that X
is a subset of Y. When we have that X ⊆ Y and Y ⊆ X, we say that X = Y.

Theorem 1.2.1. For every set X, ∅ ⊆ X and X ⊆ X.6 6 Unless stated otherwise, it is ex-
pected that the student will be able to
prove all the theorems in the notes. In
the case of results that are not too ad-
vanced, if a proof is not provided in
the notes then it is suggested as an ex-
ercise. If a proof is too advanced, a ref-
erence where it can be found is given.

1.2.1 Operations

Let us fix some set X. Relative to this universe, we can define the elementary set
operations: given sets A,B ⊆ X, we define their intersection,

A∩B = {x ∈ X | x ∈ A∧ x ∈ B};

their union,
A∪B = {x ∈ X | x ∈ A∨ x ∈ B};

the complement of B relative to A,

A \B = {x ∈ X | x ∈ A∧ x /∈ B};

and the complement of A, Ac = X \A. Note that if A,B ⊆ Y, then the first three
operations do not change when defined relative to a different universe Y, but the fourth
one does.

Theorem 1.2.2. Given sets A,B ⊆ X,

1. A∩B ⊆ A and A ⊆ A∪B;

2. A ⊆ B⇔ Bc ⊆ Ac;

3. (Ac)c = A, ∅c = X and Xc = ∅;

4. A∪Ac = X and A∩Ac = ∅;

5. A \B = A∩Bc;

6. (A∩B = ∅⇔ A ⊆ Bc), (A∩B = A⇔ A ⊆ B) and (A∪B = A⇔ B ⊆ A).

Proof. The proof is left as an exercise. For illustration purposes, let us prove the
second statement. Since it is an «if and only if» statement, it is best to give the two
proofs: one for necessity and one for sufficiency, independently.

Let us first prove the «if» part. Suppose that Bc ⊆ Ac. Then,

x ∈ Bc ⇒ x ∈ Ac,

which means, by definition, that

(x ∈ X∧ x /∈ B)⇒ (x ∈ X∧ x /∈ A),
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and hence, by Example 1.1.2, that

¬(x ∈ X∧ x /∈ A)⇒ ¬(x ∈ X∧ x /∈ B).

Then,
(x /∈ X∨ x ∈ A)⇒ (x /∈ X∨ x ∈ B),

and, therefore,
x ∈ A⇒ (x /∈ X∨ x ∈ B),

but then, since A ⊆ X, we must conclude that

x ∈ A⇒ x ∈ B.

Now we must prove the «only if» part. Suppose that A ⊆ B. If Bc = ∅, then we
are done, by Theorem 1.2.1. Otherwise, suppose that x ∈ Bc. Then, x ∈ X and x /∈ B.
Since A ⊆ B, we must have that x /∈ A. Then, we have x ∈ X and x /∈ A, which
means that x ∈ Ac. Since this is true for all x ∈ Bc, we can conclude that Bc ⊆ Ac,
as needed.7 7 Indeed, this was a long and rather

pedantic argument, for a result that
is relatively simple. As these notes
progress, we will present the arguments
in a more efficient way.

Note that the argument used to
prove sufficiency (if) uses the contra-
positive principle, whereas the neces-
sity (only if) part argues by contra-
diction (where?). As part of the ex-
ercise, you may want to try the suf-
ficiency part using a contradiction ar-
gument and the necessity part via the
contrapositive principle.

Theorem 1.2.3. Given sets A,B,C ⊆ X,

1. A∪ (B∪C) = (A∪B)∪C = (A∪C)∪B;

2. A∩ (B∩C) = (A∩B)∩C = (A∩C)∩B;

3. A∪ (B∩C) = (A∪B)∩ (A∪C) and A∩ (B∪C) = (A∩B)∪ (A∩C);

4. (A∩B)∪ (A \B) = A.

Proof. Again, the argument is left as an exercise, but for illustration purposes we prove
the last statement. By definition, we have to show that (A∩B)∪ (A \B) ⊆ A and that
A ⊆ (A ∩ B) ∪ (A \ B). For the first inclusion,8 suppose that x ∈ (A ∩ B) ∪ (A \ B). 8 Note that if (A∩B)∪ (A\B) = ∅,

we are done by Theorem 1.2.1. It is this
this kind of immediate step that will be
omitted henceforth in the notes.

By definition, then, either x ∈ (A∩B) or x ∈ (A \B). If the former statement is true,
then the fact that x ∈ A follows from statement 1 in Theorem 1.2.2. If the latter is
true, then the fact that x ∈ A follows by definition. For the second inclusion, consider
x ∈ A. Since A ⊆ X, then x ∈ X. Obviously, either x ∈ B or x /∈ B. Since B ⊆ X, then
either x ∈ B or x ∈ Bc. In the first case, x ∈ A∩B. In the second x ∈ A∩Bc = A \B,
by statement 5 in Theorem 1.2.2.

Given the first result of this theorem, if we just define

A∪B∪C = {x ∈ X | x ∈ A∨ x ∈ B∨ x ∈ C},

we get that A ∪ (B ∪C) = (A ∪ B) ∪C = (A ∪C) ∪ B = A ∪ B ∪C. The same can be
done for the intersection, and for collections or more than three sets.

Theorem 1.2.4 (DeMorgan’s laws). Given sets A,B ⊆ X, we have that (A ∩ B)c =

Ac ∪Bc and (A∪B)c = Ac ∩Bc.

Proof. Let us prove only the first law, leaving the second one as an exercise. Suppose
first that x ∈ (A ∩ B)c. Then x ∈ X and x /∈ (A ∩ B). The latter implies that
¬(x ∈ A∧ x ∈ B), which is the same as saying that (x /∈ A∨ x /∈ B). Since x ∈ X,
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we have that (x ∈ Ac ∨ x ∈ Bc), so that x ∈ Ac ∪ Bc and (A ∩ B)c ⊆ Ac ∪ Bc. Now,
suppose that x ∈ Ac ∪Bc. Then, (x ∈ Ac ∨ x ∈ Bc), which means that

((x ∈ X∧ x /∈ A)∨ (x ∈ X∧ x /∈ B)).

It follows that x ∈ X and ¬(x ∈ A∧ x ∈ B), so that x ∈ X and ¬(x ∈ A ∩ B) or that
x ∈ (A∩B)c. Then, we can conclude that Ac ∪Bc ⊆ (A∩B)c.

All these results exist in far more general versions. In most cases, however, the ideas
behind their proofs are the same as the ones given here.

Exercise 1.2.1 (Generalized DeMorgan’s laws). A general version of DeMorgan’s
laws will later prove to be useful. Formulate and prove a law that applies to more
general collections of sets (and not just to two-set collections).

A partition of a set A ⊆ X is a collection B of subsets of X such that: (i) B,B ′ ∈ B

and B 6= B ′ imply that B∩B ′ = ∅; and (ii) ∪B∈BB = A.

1.3 The Principle of Mathematical Induction

We already know some standard techniques to prove statements of the form
A ⇒ B. In general, in order to prove that in some specific mathematical context
statement B is true, we can use these techniques, using as “A” the whole mathematical
structure that the context has. For a particular type of problems, though, there exists
a technique that usually proves to be very effective. Consider first the following axiom:

Axiom 1.3.1 (The Principle of Mathematical Induction). Let P(n) be a statement
that is defined for each natural number n ∈N. If P(1) is true and

P(n)⇒ P(n+ 1),

then P(n) is true for all n ∈N.

Now, suppose that we want to show that for all n ∈N, the statement B(n) is true.
Then, it follows from Axiom 1.3.1 that all we need to show is that B(1) is true, and
that (for all n ∈N) if statement B(n) is true, then so is statement B(n+ 1).

It turns out that the principle of mathematical induction is equivalent to another,
equally intuitive, axiom.

Axiom 1.3.2 (The Principle of Well Ordering). Every non-empty set of natural num-
bers has a smallest element.

Theorem 1.3.1. Axiom 1.3.1 is true if, and only if, so is Axiom 1.3.2.

Proof. For the «if» part, we can argue by contradiction: let us assume that while
Axiom 1.3.2 is true, Axiom 1.3.1 is not. Then, there exists a family of statements, P(n),
defined for all natural number, that satisfies three properties: P(1) is true, P(n) ⇒
P(n+ 1), and P(n∗) is not true, for some n∗ ∈ N. Since P(1) is true, it must be that
n∗ > 1, while, by the third property,

{n ∈N | P(n) is not true } 6= ∅.
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By Axiom 1.3.2, this latter set has a smallest element, which we can call n̂. By
construction, since n̂ is the smallest natural for which P(n) is false, it must be that
P(n̂− 1) is true. Then, by the second condition, P(n̂) is also true, which gives us a
contradiction.

For the «only if» part, define the following statement for each natural number n:

P(n) = [(S ⊆N ∧ S∩ {1, . . . ,n} 6= ∅)⇒ S has a smallest element].

Note that P(1) is true, for if S ∩ {1} 6= ∅, then 1 ∈ S. Now, suppose that P(n) is
true, and that S ∩ {1, . . . ,n+ 1} 6= ∅. If S ∩ {1, . . . ,n} = ∅, then n+ 1 is the smallest
element of S. Otherwise, S∩ {1, . . . ,n} 6= ∅, which implies by P(n) that S has a smallest
element. This means that P(n)⇒ P(n+ 1), and then, by Axiom 1.3.1, it follows that
P(n) is true for all n ∈ N. But this implies Axiom 1.3.2, for if S 6= ∅, then there is
some n ∈N for which S∩ {1, . . . ,n} 6= ∅.

1.4 Binary Relations

A binary relation is the result of all pairwise comparisons between the elements
of a set, according to some criterion. Formally, binary relation R on set X is a subset
of X× X. It tells us whether pairs of elements (x, x ′) stand in the relation or not.9 9 It should be clear that the order of

the elements in the pair matters.The set-theoretical notation should be that if they stand in the relation one says that
(x, x ′) ∈ R, whereas (x, x ′) /∈ R signifies that they do not, but more usual notation is
to write that xRx ′ in the former case, and that ¬xRx ′ in the latter.

Example 1.4.1. >, > and = are all binary relations on N. If X is a set and P is
the collection of all subsets of X, then ⊆, ⊂ and = are all binary relations on P.
One can also define a binary relation on P, by saying that ARB if, and only if,
A∩B 6= ∅.

Binary relation R on X is complete if for any x, x ′ ∈ X, either xRx ′, x ′Rx or x = x ′;10 10 Or both. In these notes, we do not
treat the connector «or» as exclusive.

When the binary relation is not
complete, it is usually said that it is
partial, and less often that it is incom-
plete.

it is reflexive if for any x, xRx, and irreflexive if for any x, ¬xRx; it is symmetric
if xRx ′ implies that x ′Rx, asymmetric if xRx ′ implies ¬x ′Rx, and antisymmetric if
xRx ′ and x ′Rx together imply that x = x ′; it is transitive if xRx ′ and x ′Rx ′′ together
imply xRx ′′.

If R is reflexive and transitive, it is said to be a pre-order on X. If a pre-order is
antisymmetric, it is further called an order.

Example 1.4.2. Recall the notation of the previous example. Note that > is a
complete order on N, and that ⊆ is only an order on P. Note that > on N is
irreflexive and asymmetric. Note that the binary relation defined on P by saying
that ARB if, and only if, A∩B 6= ∅ is not transitive.

Exercise 1.4.1. For each one of the relations introduced in Example 1.4.1, argue
which properties it satisfies, and which not.

If R is a binary relation on X and A ⊆ X, we define

R[A] = {x ∈ X | ∃x ′ ∈ A : x ′Rx}

and
R−1[A] = {x ∈ X | ∃x ′ ∈ A : xRx ′}.
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The domain of R is the set R−1[X], and its range is R[X].11

11 Equivalently, the domain is

{x ∈ X | ∃x ′ ∈ X : xRx ′};

and the range is

{x ∈ X | ∃x ′ ∈ X : x ′Rx}.If relation R is reflexive, symmetric and transitive, we say that it is an equivalence
relation on X.12 In such case, a subset A of X is said to be an R-equivalence class if 12 Do you see the rationale behind this

name?there exists some x ∈ X such that R[x] = A.13 The importance of equivalence classes
13 More correct notation would be
R[{x}], since x is an element of X and
not a subset of it. We simplify the
notation and hope that no confusion
arises.

is that they form a partition of the space on which they are defined, as the following
theorem shows.

Exercise 1.4.2. Prove that if R is an equivalence on X, then x ′ ∈ R[x] implies that
R[x ′] = R[x].

Theorem 1.4.1. Let R be an equivalence on X and let B be the collection of all
R-equivalence classes. B is a partition of X.

Proof. By reflexivity of R, we have that x ∈ R[x] ∈ B, which implies that x ∈ ∪B∈BB.
On the other hand, suppose that B,B ′ ∈ B, B 6= B ′. We need to show that B∩B ′ =

∅. In order to argue by contradiction, let us assume that x̄ ∈ B∩B ′. Let x and x ′ be
such that R[x] = B and R[x ′] = B ′. Since x̄ ∈ R[x] and x̄ ∈ R[x ′], by Exercise 1.4.2 we
have that R[x̄] = R[x] and R[x̄] = R[x ′], wich is impossible since B 6= B ′.

1.5 Application: Preferences

Consider a situation in which a person faces a nonempty set X of alternatives.
We refer to X as the choice space. A problem we study in economics14 is how the 14 More specifically, in the field of eco-

nomics called Decision Theory.person makes her choice, when she is allowed to pick one alternative from X, or perhaps
from a subset of it. The key element in our analysis of the person’s choice is to model
«what she wants». For us, the individual’s preferences are subjective judgments about
the relative desirability of the available choices: given two alternatives, preferences are
defined by her answer to the question Is the first alternative at least as good as the
second one? Formally, then, the decision-maker’s preferences are a binary relation
% defined on the choice set: given a pair of alternatives x and x ′, we write x % x ′

if, according to the person’s tastes, x is at least as good as x ′.15 In economics binary

15 We take the person’s preferences
as exogenous, in the sense that we do
not explain where they come from. In-
stead, we concentrate on the problem
of studying the individual’s behavior
given her preferences, under the as-
sumption that these preferences will
not be affected by the person’s choices.

relation % is said to be rational if it is complete, reflexive and transitive.16 16 Decision-makers with incomplete
preferences may find instances in which
they are unable to choose: they are
simply unable to make a value judg-
ments about the relative (subjective)
quality of two alternatives. Reflexiv-
ity is consistent with our interpretation
of at-least-as-good preference. Peo-
ple with non-transitive preferences are
open to full rent extraction, as a per-
son could find a cycle of choices for
which the person is willing to pay a
positive premium at each step. In eco-
nomics, one usually assumes that the
decision-maker under consideration has
rational preferences, although in some
cases (e.g. very complicated problems)
it may be reasonable to consider that
individual’s preferences are incomplete;
also, some cases of non-transitive pref-
erences are sometimes observed in real
life.

Fix a rational binary relation %, and define the following (induced) binary relations
on the choice set: the strict preference relation �, by saying x � x ′ if it is not true
that x ′ % x; and the indifference relation ∼, by saying x ∼ x ′ if it is true that x % x ′

and that x ′ % x. Formally, � corresponds to the asymmetric part of %, while ∼ is its
symmetric part.

Exercise 1.5.1. Argue that � is transitive, but not reflexive, and that ∼ is reflexive,
symmetric and transitive. Could these relations be complete? Could they be
rational?

Importantly, it follows from the previous exercise that relation ∼ is an equivalence,
and then, from Theorem 1.4.1, that it partitions X by the equivalence classes it defines.

1.6 Functions

Fix two nonempty sets, X and Y. A function f, defined from set X into set Y,
and denoted f : X → Y, is a rule that assigns to each x ∈ X a unique f(x) ∈ Y. Here,



short course on real analysis for economics 13

set X is said to be the domain of f, and Y its co-domain or target set. If f : X → Y,
and A ⊆ X, the image of A under f, denoted f[A], is the set

f[A] = {y ∈ Y | ∃x ∈ A : f(x) = y}.

In particular, f[X] is called the range of f.
Function f : X→ Y is said to be onto, or surjective, if f[X] = Y; it is said to be one-

to-one, or injective, if f(x1) = f(x2)⇒ x1 = x2. A function is said to be a one-to-one
correspondence, or bijective, if it is both onto and one-to-one.

If f : X→ Y, and B ⊆ Y, the inverse image of B under f is the set

f−1[B] = {x ∈ X | f(x) ∈ B}.

Theorem 1.6.1. The function f : X → Y is onto if, and only if, for all B ⊆ Y,
B 6= ∅, f−1[B] 6= ∅.

If f : X → Y is a one-to-one correspondence, the inverse function f−1 : Y → X is
implicitly defined by {f−1(y)} = f−1[{y}].17 17 Notice that this would not have

been be a bona fide definition, had we
forgotten to say that f is a one-to-one
correspondence. What could have gone
wrong?

1.7 Application: Representation of Preferences

It is most usual in economics to represent a decision-maker’s preferences by
a function that gives a higher value the more the person likes an alternative. That
is, we say that the binary relation % on X is represented by function U : X → R if
U(x) > U(x ′) occurs when, and only when, x % x ′; we say that % is representable
if there is some function U that represents it. Notice that the representation of %
by a utility function amounts to attributing real numbers to the equivalence classes
defined by ∼, in such a way that higher numbers are assigned to classes that are «more
prefered» by the individual.

The function U that represents % is called utility function. Notice that if a prefer-
ence relation is representable, then there are infinitely many different utility functions
that represent it. All these representations will have the same contour sets,18 but 18 That is, the same ordinal informa-

tionmay give nontrivially different utility levels.19 It is for this reason that interpersonal 19 Which means different cardinal in-
formation.comparisons of utility are considered problematic.

Exercise 1.7.1. Argue that representability implies rationality. Do you think that
rationality implies representability?

In some cases the existence of a utility function that represents an individual’s
preferences is very easy to establish. For example, if X is finite, then any complete
preference relation on it will be representable. But there are also well-known cases
of preference relations that cannot be represented by utility functions, because they
partition the choice space in «too many,» ordered equivalence classes.

The general problem of what preference relations can be represented by functions is
beyond these lectures, but a canonical example from economics is given in Chapter 4.
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1.8 Countable Sets

As natural as the definition of the natural numbers is the definition of a finite
set: set S is finite if there exist a natural number n and an onto function f : {1, . . . ,n}→
S.

Now, there are sets that are infinite, but we can still «count» them, even if it would
take us forever to do so. Formally, we say that set S is countable if there exists an
onto function f : N→ S.

Example 1.8.1. Any finite set is countable, obviously. The set of natural num-
bers is countable, also obviously. Maybe more surprisingly, given that one of
them contains more numbers than the other, is that the set of integers, Z =

{0, 1,−1, 2,−2, . . .}, is also countable. To see why this is the case, it suffices to
consider the following mapping:

1 7→ 0

2 7→ 1

3 7→ −1

4 7→ 2

5 7→ −2
...

This mapping constitutes a function from N onto Z, so the latter is indeed count-
able.20 20 If you want to be really formal, just

define the function f : N→ Z as:

f(n) =

{
n/2, if n is even;
−(n− 1)/2, otherwise.

It should be clear that this map is onto.

Theorem 1.8.1. If an infinite set S is countable, then there exists a bijection
f : N→ S.

Proof. Since S is countable, there exists a surjective function φ : N → S. Now,
construct the following mapping, recursively: First, let f(1) = φ(1). Then, for any
n ∈N, consider the set

Mn =
{
m ∈N | ∀n ′ ∈ {1, . . . ,n− 1},φ(m) 6= f(n ′)

}
.

Since S is infinite and φ is onto, this set is nonempty and, then, by the principle of
well ordering, it contains a smallest element, which we can denote as mn. Then, we
define f(m) = φ(mn).

In order to complete the proof, we must show that, so constructed, f is both one-
to-one and onto. To see that it is onto, consider any s ∈ S. Since φ is onto, we can
find some n ∈ N for which φ(n) = s. Let ns be the smallest such n, which exists by
Axiom 1.3.2. Then, for all n < ns we have that f(n ′) 6= φ(ns), which implies that ns
is the smallest element of Mns and, then, f(ns) = φ(ns) = s.

Now, to see that f is one-to-one, consider two distinct natural numbers n and n ′,
assuming, with no loss of generality, that n > n ′. By construction, f(n) = φ(mn), for
some mn ∈Mn. It is immediate that f(n) = φ(mn) 6= f(n ′).

Exercise 1.8.1. Argue that a set is countable if, and only if, every nonempty
subset of it is also countable.
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It is also interesting to know which sets are not countable. In the next chapter, we
introduce the set of real numbers, which is one such set. Another example, which is
classical in mathematics, is that the set of infinite strings of two distinct objects, say
the numbers 0 and 1, is not countable.21 21 The argument is due to Cantor, and

is extremely elegant: if such set were
countable, we could organize it in the
order given by the bijection of Propo-
sition 1.8.1 – think of it as having the
strings stacked one over the other –
now, construct a string by going up di-
agonally and taking the element differ-
ent than the one on the corresponding
string; it follows by construction that
this new string is different from all the
other ones, so it is not the image of
any natural number, which is impossi-
ble because the mapping was supposed
to be onto.





2
Introduction to Real Analysis

2.1 Natural and Real Numbers

In a Real Analysis course, we would be concerned with the construction of the
set of real numbers, R. One way to do this is to take as a primitive the set N of natural
numbers, then construct the set of rational numbers, and finally fill in the holes that
are left by the latter (i.e., the irrational numbers). Once R is constructed, it is shown
that it can be completely characterized by three groups of axioms. Although we will
take as given the existence and properties of R, we now recall the first two groups of
axioms exhibited by R.1 1 You will see how trivial these two

groups of axioms look; that’s why we
need not spend much time on them,
and can take them as given. In Chap-
ter 3, we will introduce the third axiom
(Axiom 3.3.1), which is satisfied by R,
but not by the set of rational numbers.

Axiom 2.1.1 (Field Axioms). Given numbers x,y, z ∈ R,

1. x+ y = y+ x and (x+ y) + z = x+ (y+ z) ;

2. there exists a number, 0 ∈ R, such that w+ 0 = w for all w ∈ R;

3. there exists a number w ∈ R for which x+w = 0;

4. xy = yx and (xy)z = x(yz);

5. there exists a number, 1 ∈ R, such that 1w = for all w ∈ R;

6. if x 6= 0, there exists w ∈ R for which xw = 1; and

7. x(y+ z) = xy+ xz.

We will denote by R+ the set of nonnegative real numbers and by R++ the set of
positive real numbers. Accordingly, we denote R− = R \ R++ and R−− = R \ R+.

Axiom 2.1.2 (Order Axioms). Given numbers x,y ∈ R++ and z ∈ R, x+ y ∈ R++,
xy ∈ R++, −x /∈ R++ and, either z ∈ R++, or −z ∈ R++, or z = 0.

2.2 Metric Spaces

Fix a nonempty set X. A metric for X is a function d : X×X→ R that satisfies:

1. for all x, x ′ ∈ X, d(x, x ′) > 0;

2. d(x, x ′) = 0 ⇐⇒ x = x ′;
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3. for all x, x ′ ∈ X, d(x, x ′) = d(x ′, x); and

4. for all x, x ′, x ′′ ∈ X, d(x, x ′) + d(x ′, x ′′) > d(x, x ′′).

The fourth of these properties is called the triangle inequality. The third property
is referred to as symmetry. Somewhat surprisingly, the first property is redundant in
the definition, as it is implied by the other three.

Exercise 2.2.1. Argue that d : X× X → R is a metric if, and only if, it satisfies
properties 2 to 4 above.

Example 2.2.1. The usual way to measure how «far from 0» a real number is,
is by its absolute value, |x|, which is defined as x if x > 0, and as −x otherwise.2 2 Technically speaking, the absolute

value is a norm, and, when used, it de-
fines R as a normed vector space. Four
properties of the absolute value (and of
any norm) are straightforward:
(1) for all x ∈ R, |x| > 0;
(2) for all x ∈ R, |x| > x;
(3) if x ∈ R, and y ∈ R+ are such that
−y 6 x 6 y, then |x| 6 |y|; and
(4) for all x ∈ R, |x| = |−x|.

Importantly, given numbers x,y ∈ R, |x+ y| 6 |x|+ |y|. To see this, note first that
if x+ y > 0, we have that |x+ y| = x+ y 6 |x|+ |y|, by definition and the second
property above. Alternatively, when x+ y < 0, we have that

|x+ y| = −(x+ y) = (−x) + (−y) 6 |− x|+ |− y| = |x|+ |y|,

by definition and the second and fourth properties. It then follows that the func-
tion (x, x ′) 7→ |x− x ′| is a metric for R.

Exercise 2.2.2. Prove that if x ∈ R++ and y ∈ R is such that |y− x| < x, then
y ∈ R++. Also prove that if x ∈ R−− and y ∈ R is such that |y− x| < −x, then
y ∈ R−−.

2.3 Finite-Dimensional Euclidean Spaces

For a number K ∈N, the K-dimensional real (Euclidean) space is the K-fold Carte-
sian product of R. We denote this space by RK, so that x ∈ RK is (x1, x2, . . . , xK).3

3 Similar notation as above is used for
orthants of RK.

Now, in order to measure how far from 0 (that is, from (0, 0, . . . , 0)) an element x of
RK is, we use the Euclidean norm, which is defined as4

4 If you want to avoid confusion, you
can be explicit about the dimension
for which the norm is being used, by
adopting the notation ‖ · ‖K instead.
Also, we will simplify the notation by
not always writing the limits in the in-
dex of a summation, when it is obvious
what these limits are; for instance, we
may write (∑

k

x2k

)1/2

for the definition that follows.

‖x‖ =

(
K∑
k=1

x2k

)1/2

= (x · x)2.

It is obvious that when K = 1 the Euclidean norm corresponds to the absolute value.
More importantly, it is also clear that for every x ∈ RK, one has that ‖x‖ > 0;
‖x‖ = 0 ⇔ x = 0; −y 6 x 6 y ⇒ ‖x‖ 6 ‖y‖; and ‖x‖ = ‖− x‖. The crucial property,
finally, is that Triangle Inequality also holds in RK.

Lemma 2.3.1 (Triangle Inequality in RK). Given x,y ∈ RK, ‖x+ y‖ 6 ‖x‖+ ‖y‖.

Proof. A well-established result in mathematics, called the Cauchy-Schwartz In-
equality, states that5

5 The proof of this is not very hard.
In vector terms, we need to show that

x ·y 6 ‖x‖×‖y‖.

If y = 0, the result is obvious. Else,
define

δ = x−
x ·y
y ·y

y,

and note that δ ·y = 0. Now,

‖x‖2 = x ·x

=

(
δ+

x ·y
y ·y

y

)
·
(
δ+

x ·y
y ·y

y

)
= δ · δ+

(
x ·y
y ·y

)2
y ·y

>
(x ·y)2

y ·y

=
(x ·y)2

‖y‖2
.

(∑
k

xkyk
)2
6
∑
k

x2k ×
∑
k

y2k.
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Then,

‖x+ y‖2 =
∑
k

x2k + 2
∑
k

xkyk +
∑
k

y2k

6
∑
k

x2k + 2
(∑
k

x2k
)1/2(∑

k

y2k
)1/2

+
∑
k

y2k

= (‖x‖+ ‖y‖)2,

which implies the result we want.

As the other properties are straightforward, the important implication of this lemma
is that function (x, x ′) 7→ ‖x− x ′‖ is a metric for RK. This function is, indeed, known
as the Euclidean metric.

2.4 Sequences

A finite sequence in RK is a function f : X → RK, where, for some n∗ ∈ N, we
have X = {n ∈ N | n 6 n∗}. An infinite sequence in RK is a function f : N → RK.6

6 It is important to note that a se-
quence has more structure than a set
(i.e. it is more complicated). Remem-
ber that a set is completely defined
by its elements, no matter how they
are described. For example, the set
{0, 3, 8, 15, 24} is the same as the set
{24, 15, 8, 3, 0}. However, the sequences
(0, 3, 8, 15, 24) and (24, 15, 8, 3, 0) are
clearly different: in a sequence, the or-
der matters!

If no confusion is likely, the space in which a sequence lies is omitted. In the cases
of finite sequences, it is usual to express them extensively as (a1,a2, . . . ,an∗), where
an = f(n), for n ∈ X. 7 Similarly, we can express infinite sequences as (a1,a2, . . .) or 7 We have already introduced finite

sequences: an element of RK is noth-
ing but a sequence in R, with n∗ =

K. In other words, shorthand for
(a1,a2, . . . ,an∗) is simply (an)

n∗
n=1.

(an)
∞
n=1, where an = f(n), for n ∈N.

Example 2.4.1. Suppose that n∗ = 5, so that X = {1, 2, 3, 4, 5}, and f(n) = n2 − 1,
for n ∈ X; then, we can express the finite sequence as (0, 3, 8, 15, 24) or (n2−1)5n=1.
Or suppose that f(n) = (

√
n, 1/n, 3), for all n ∈ N; then, we can express the

infinite sequence as ((1, 1, 3), (
√
2, 1/2, 3), (

√
3, 1/3, 3), . . .) or (

√
n, 1/n, 3)∞n=1.

Following common usage in the literature, when referring to an infinite sequence,
henceforth we will simply say «a sequence.»

Using the structure that a sequence has, (an)∞n=1 is said to be nondecreasing if for
all n ∈ N, an+1 > an, and nonincreasing if for all n ∈ N, an+1 6 an. If all the
inequalities in the first definition are strict, the sequence is increasing, while if all the
inequalities in the second definition are strict, the sequence is decreasing.8 Sequence 8 Note that when we say x 6 y with

x,y ∈ RK, we are expressing K in-
equalities: that xk 6 yk for every
k = 1, . . . ,K. This implies that for ev-
ery x,y ∈ R, either x 6 y or x > y,
but the same is not true in higher-
dimensional spaces. Hence, the previ-
ous concepts are more useful in R than
in RK for K > 2.

(an)
∞
n=1 is bounded above if there exists ā ∈ R such that an 6 ā for all n ∈N. It is

bounded below if there exists ā ∈ R such that an > ā for all n ∈ N, and is bounded
if it is bounded above and below.

2.5 Cauchy Sequences and Subsequences

A type of sequence that is very useful is the given by the following definition:
a sequence (an)

∞
n=1 is Cauchy if for all ε > 0 there exists some n∗ ∈ N for which

‖an1 − an2‖ < ε for all n1,n2 > n∗.
Given a sequence (an)

∞
n=1, sequence (bm)∞m=1 is a subsequence of (an)

∞
n=1 if

there exists an increasing sequence (nm)∞m=1 such that nm ∈ N and bm = anm for
all m ∈N. That is, a subsequence is a selection of some (possibly all) members of the
original sequence, preserving their original order.
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Example 2.5.1. Consider the sequence (1/
√
n)∞n=1, and note that (1/

√
2n+ 5)∞n=1

is a subsequence of the former. To see why, consider the sequence (nm)∞m=1 =

(2m+ 5)∞m=1. Note however that none of (1/n)∞n=1 and (1/(2n− 5))∞n=1 is a sub-
sequence of the other one. Note also that neither (n− 2)∞n=1 nor ((n− 2)2)∞n=1
are subsequences of each other.

Exercise 2.5.1. Is (1/
√
n)∞n=1 a subsequence of (1/n)∞n=1? How about the other

way around?

2.6 Limits

Very often one needs to understand the behaviour of a sequence as it advances
along its members, ad infinitum. Alternatively, one may need to understand the values
that a function takes as one gets arbitrarily close, within the function’s domain, to a
given point.

2.6.1 Limits of sequences

Point a ∈ RK is the limit of sequence (an)
∞
n=1 if for all ε > 0 there exists some

n∗ ∈N for which one has that ‖an − a‖ < ε for all n > n∗.9,10

9 Note that we said «the limit», and
not «a limit». This is correct, because
if a sequence has a limit, this limit is
unique. It is a very good exercise to
prove this!
10 Obviously, the sequence (an)

∞
n=1

is defined in RK as well. Otherwise,
expressions like ‖an − a‖ would not
make any sense.

Exercise 2.6.1. Does the sequence (1/
√
n)∞n=1 have a limit? Is it Cauchy? How

about (3n/(n+
√
n))∞n=1?

Sequence (an)∞n=1 is said to be convergent when it has a limit a ∈ RK, in which case
one also says that the sequence converges to the limit point. When (an)

∞
n=1 converges

to a, the following notation is also sometimes used: an → a, or limn→∞ an = a.

Exercise 2.6.2. Does ((−1)n)∞n=1 converge? Does (−1/n)∞n=1?

It is convenient to allow ∞ and −∞ to be limits of sequences. Thus, we extend the
definition as follows: for a sequence (an)∞n=1 in R, we say that limn→∞ an =∞ when
for all ∆ > 0 there exists some n∗ ∈ N for which an > ∆ for all n > n∗; we say that
limn→∞ an = −∞ when limn→∞(−an) =∞.

Exercise 2.6.3. Does the sequence (3n/
√
n)∞n=1 have a limit? Does it converge?

The importance of concepts introduced in the previous section is given by the fol-
lowing theorems.

Theorem 2.6.1. Sequence (an)
∞
n=1 converges to a ∈ RK if, and only if, every

subsequence of (an)∞n=1 converges to a.

Proof. Sufficiency is immediate, for any sequence is a subsequence of itself.
For necessity, note first that if (nm)∞m=1 is an increasing sequence of natural num-

bers, then,11 11 The argument for this is by Ax-
iom 1.3.1: (i) Obviously, n1 > 1, since
n1 ∈ N. (ii) Suppose that nm > m

for a given m; Since (nm)∞m=1 is in-
creasing, nm+1 > nm, so nm+1 >
nm+ 1 >m+ 1.

nm > m for all m ∈N. (∗)

Now, let (bm)∞m=1 be a subsequence of (an)∞n=1, fix the increasing sequence (nm)∞m=1
of natural numbers for which bm = anm , and assume that an → a ∈ RK. Fix ε > 0.
Since an → a, there exists some n∗ ∈ N for which ‖an − a‖ < ε whenever n > n∗.
By (∗), it is immediate that if m > n∗, then ‖bm − a‖ = ‖anm − a‖ < ε.
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Theorem 2.6.2. Sequence (an)
∞
n=1 converges if, and only if, it is a Cauchy se-

quence.

Theorem 2.6.2 is important, for it constitutes the key step in the construction of the
real numbers. The «only if» part is an interesting exercise, and the student should be
able to do it. The «if» argument, on the other hand, is very complicated and is based
on the fact that the Reals are constructed as the «completion» of the holes left in the
line by the Rationals.12 12 The idea is as follows. Say that

two Cauchy sequences (an)
∞
n=1 and

(bn)
∞
n=1 in R are Cauchy-equivalent if

for all ε > 0 there exists some n∗ ∈N

for which |an − bn| < ε for all n >
n∗. It is easy to see that this relation
is reflexive, symmetric and transitive.
Now, let [(an)

∞
n=1] denote the equiv-

alence class of (an)
∞
n=1, which is the

set of all sequences that are Cauchy-
equivalent to (an)

∞
n=1.

Then, one can construct the Re-
als as the set of equivalence classes of
Cauchy sequences. That is, one de-
fines the Reals as the set of numbers
x with the property that there exists a
Cauchy sequence (an)

∞
n=1 of rational

numbers that is Cauchy-equivalent to
the sequence (x,x,x, . . .).

The proof of Theorem 2.6.2 then
proceeds in three steps: First, one
proves that any Cauchy sequence of ra-
tional numbers converges to its equiv-
alence class. Second, one proves that
if a Cauchy sequence has a convergent
subsequence, then the sequence itself
converges to the same limit as the sub-
sequence. Then, one argues Theorem
2.6.2, using the previous results and ar-
guing that every Cauchy sequence has a
convergent subsequence. For a detailed
argument, see, for example, Corbae et
al (2009).

The next results study the connection between boundedness and convergence of
sequences.

Theorem 2.6.3. If sequence (an)
∞
n=1 in R is convergent, then it is bounded.

We do not prove this theorem, but the argument is one that the student should
by now be confident in giving. The theorem shows that boundedness is a necessary
condition for convergence. The following result states that in some cases it is also
sufficient.

Theorem 2.6.4. If sequence (an)
∞
n=1 is non-decreasing and bounded above, or

non-increasing and bounded below, it is convergent.

Proof. We only argue the case for non-decreasing sequences, for the other case is
identical, and assume that K = 1 in order to make the argument easier to see. For this,
it suffices to show that if a sequence (an)∞n=1 is non-decreasing and does not converge,
then it cannot be bounded above.

Since (an)
∞
n=1 does not converge, it follows from Theorem 2.6.2 that it cannot be

Cauchy. Then, there is some ε > 0 such that for all n∗ ∈N one can find n ′,n ′′ > n∗,
n ′′ > n ′, such that |an ′ − an ′′ | > ε. Using the fact that (an)

∞
n=1 is non-decreasing,

we can write the latter inequality as an ′′ > an ′ + ε, given that n ′′ > n ′.
Now, we construct a subsequence of (an)∞n=1 as follows. Using n∗ = 1, it is imme-

diate that there exist n1,n2 ∈ N, n2 > n1, for which an2 > an1 + ε. Then, using
n∗ = n2 + 1, we can find n4 > n3 > n2 for which an4 > an3 + ε, and so on: for each
even m, we find nm+2 > nm+1 > nm such that anm+2 > anm+1 + ε.

Since (nm)∞m=1 is increasing, it follows that (bm)∞m=1 = (anm)
∞
m=1 is a subse-

quence of (an)∞n=1. Since the latter is non-decreasing, we have, by construction, that

b1 < b1 + ε 6 b2 6 b3 < b3 + ε 6 b4 6 . . . ,

which implies that for all m > 2,

bm >

{
b1 +

m
2 ε, if m is even;

b1 +
m−1
2 ε, otherwise.

Since ε > 0, the latter implies that bm → ∞, which means that (an)
∞
n=1 is un-

bounded above.

This result shows that, for monotone sequences, boundedness suffices for conver-
gence: if a sequence (an)

∞
n=1 is monotone and bounded, then it is convergent. It

is easy to see that, in the absence of monotonicity, boundedness does not suffice for
convergence, but the following theorem, will prove to be important, proves that bound-
edness guarantees the existence of convergent subsequences, in all cases.
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Theorem 2.6.5 (Bolzano-Weierstrass). If sequence (an)
∞
n=1 is bounded, then it has

a convergent subsequence.

Proof. A formal proof is deferred to Chapter 3.13 13 An informal argument, for se-
quences in R, is as follows: if (an)∞n=1
is bounded, then it lies in some
bounded interval I1. Slice that inter-
val in halves. At least one of the halves
will contain infinitely many terms of
the sequence. Call that interval I2,
slice it in halves, and let I3 be a half
that contains infinitely many elements
. . . By doing this indefinitely, we con-
struct intervals I1, I2, . . . such that for
all n ∈N, In contains infinitely many
terms of the sequence and In+1 ⊆ In.
By construction, we can find a sub-
sequence (xnm)∞m=1 such that for all
m ∈N, anm ∈ Im. This subsequence
is Cauchy, because, by construction,
our sequence of intervals is shrinking
to zero diameter as m goes to ∞; by
Theorem 2.6.2, it must be convergent.

Exercise 2.6.4. Given a sequence (xn)
∞
n=1 defined in R, number x∗ ∈ R is said

to be its limit superior if

∀ε > 0, ∃n∗ ∈N : ∀n > n∗, xn < x∗ + ε

and
∀ε > 0,∀n ∈N,∃n ′ > n : xn ′ > x

∗ − ε.

Number x∗ ∈ R is the sequence’s limit inferior if

∀ε > 0, ∃n∗ ∈N : ∀n > n∗, xn > x∗ − ε

and
∀ε > 0,∀n ∈N,∃n ′ > n : xn ′ < x∗ + ε.

When they exist, these numbers are denoted, respectively, as lim supn→∞ xn = x∗

and lim infn→∞ xn = x∗.

1. Does the existence of the limit superior of a sequence guarantee that its limit
inferior also exists?

2. Argue that if lim supn→∞ xn = x∗, then there exists a subsequence (xnm)
∞
m=1

of (xn)∞n=1 that converges to x∗.

3. Argue that, when they both exist, lim supn→∞ xn > lim infn→∞ xn.
4. Give an example of a sequence for which the previous inequality is strong.

5. Argue that if limn→∞ xn = x̄, then lim supn→∞ xn = x̄.

6. Argue that if
lim sup
n→∞ xn = x̄ = lim inf

n→∞ xn,

then limn→∞ xn = x̄.

2.6.2 Limits of functions

Let x ∈ RK and δ > 0. The open ball of radius δ around x, denoted Bδ(x), is the set

Bδ(x) = {y ∈ RK | ‖y− x‖ < δ}.

The punctured open ball of radius δ around x is the set B ′δ(x) = Bδ(x) \ {x}. A point
x̄ ∈ RK is a limit point of X ⊆ RK if for all ε > 0, B ′ε(x̄)∩X 6= ∅.

Exercise 2.6.5. Prove that a point x̄ is a limit point of X if, and only if, there
exists a sequence (xn)

∞
n=1 defined in X \ {x̄} that converges to x̄.

Another type of limit has to do with functions, although not directly with sequences.

Definition 2.6.1. Consider a function f : X → R, where X ⊆ RK. Suppose that
x̄ ∈ RK is a limit point of X and that ȳ ∈ R. We say that limx→x̄ f(x) = ȳ
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when for all ε > 0 there exists δ > 0 for which one has that |f(x) − ȳ| < ε for all
x ∈ B ′δ(x̄)∩X.

It is important to notice that we do not require x̄ ∈ X in our previous definition,
so that f(x̄) need not be defined. Also, one should notice that even if x̄ ∈ X, x̄ is
not always a limit point of X, in which case the definition does not apply. Finally,
notice that even if x̄ ∈ X and x̄ is a limit point of X, it need not be the case that
limx→x̄ f(x) = f(x̄).

Definition 2.6.2. Consider a function f : X → R, where X ⊆ RK. Suppose that
x̄ ∈ RK is a limit point of X. We say that limx→x̄ f(x) = ∞ when for all ∆ > 0,
there exists δ > 0 for which one has that f(x) > ∆ for all x ∈ B ′δ(x̄) ∩ X. We say
that limx→x̄ f(x) = −∞ when limx→x̄(−f)(x) =∞.

Exercise 2.6.6. Suppose that X = R and f(x) = x+ a, for some a ∈ R. What is
limx→0 f(x)?

Exercise 2.6.7. Suppose that X = R and f : X→ R is defined by

f(x) =

{
1/x, if x 6= 0;
0, otherwise.

What is limx→5 f(x)? What is limx→0 f(x)?

Example 2.6.1. Let X = R \ {0} and f : X→ R is defined by

f(x) =

{
1, if x > 0;
−1, otherwise.

In this case, we claim that limx→0 f(x) does not exist. To see why, fix 0 < ε < 1,
and notice that for all δ > 0, there are x1, x2 ∈ Bδ(0) such that f(x1) = 1 and
f(x2) = −1, and, hence, |f(x1) − f(x2)| = 2 > 2ε. Because of triangle inequality, it
is thus impossible that for some ȳ ∈ R, we have |f(x1) − ȳ| < ε and |f(x2) − ȳ| < ε.
Also, it is obvious that limx→0 f(x) =∞ and limx→0 f(x) = −∞ are both impossible.

There exists a tight relationship between limits of functions and limits of sequences,
which is explored in the following theorem.

Theorem 2.6.6. Consider a function f : X → R, where X ⊆ RK. Suppose that
x̄ ∈ RK is a limit point of X and that ȳ ∈ R. Then, limx→x̄ f(x) = ȳ if, and only
if, for every sequence (xn)

∞
n=1 such that xn ∈ X \ {x̄}, for all n ∈ N, and that

limn→∞ xn = x̄, one has that limn→∞ f(xn) = ȳ.
Proof. We argue sufficiency by contradiction: suppose that for every sequence (xn)∞n=1
such that all xn ∈ X \ {x̄} and that limn→∞ xn = x̄, we have that limn→∞ f(xn) = ȳ,
but, still, it is not true that limx→x̄ f(x) = ȳ. Then, there must exist some ε > 0 such
that, for all δ > 0,

∃x ∈ B ′δ(x̄)∩X : |f(x) − ȳ| > ε.

By assumption, for all n ∈ N, there is xn ∈ B ′1/n(x̄) ∩ X for which |f(xn) − ȳ| > ε.
Construct the sequence (xn)

∞
n=1. By construction, x∗n ∈ X \ {x̄} for all n ∈ N, and,

since 1/n → 0, we have that limn→∞ xn = x̄. However, by assumption, it is not true
that limn→∞ f(xn) = ȳ, which contradicts the initial hypothesis.
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For necessity, consider any sequence (xn)
∞
n=1 such that all xn ∈ X \ {x̄} and that

xn → x̄. Fix ε > 0. Since limx→x̄ f(x) = ȳ ∈ R, then, there is some δ > 0 such that
for all x ∈ B ′δ(x̄) ∩ X it is true that |f(x) − ȳ| < ε. Since limn→∞ xn = x̄, there is
n∗ ∈ N for which xn ∈ Bδ(x̄) for all n > n∗. Moreover, since each xn ∈ X \ {x̄}, we
have that, when n > n∗, xn ∈ B ′δ(x̄) ∩ X and, therefore, |f(xn) − ȳ| < ε. Since ε > 0
was arbitrarily chosen, this implies that limn→∞ f(xn) = ȳ.
2.6.3 Properties of limits

Theorem 2.6.7. Let f : X→ R and g : X→ R. Let x̄ be a limit point of X. Suppose
that for number ȳ1, ȳ2 ∈ R one has that limx→x̄ f(x) = ȳ1 and limx→x̄ g(x) = ȳ2.
Then,14 14 The following notation is intro-

duced. We define

(f+g) : X→ R

by

(f+g)(x) = f(x)+g(x).

We define (f.g) and (αf), for α ∈ R,
accordingly. Now, define

X∗g = {x ∈ X | g(x) 6= 0}

Then, we define

f

g
: X∗g→ R

by
f

g
(x) =

f(x)

g(x)
.

1. limx→x̄(f+ g)(x) = ȳ1 + ȳ2;

2. limx→x̄(αf)(x) = αȳ1, for all α ∈ R;

3. limx→x̄(f.g)(x) = ȳ1.ȳ2; and

4. if ȳ2 6= 0, then limx→x̄ fg (x) = ȳ1/ȳ2.

Proof. Let us prove only the first two statements of the theorem. For the first state-
ment, we have that for all ε > 0, there exist δ1, δ2 > 0 such that |f(x)− ȳ1| < ε/2 for all
x ∈ B ′δ1(x̄) ∩ X, and |g(x) − ȳ2| < ε/2 for all x ∈ B ′δ2(x̄) ∩ X. Let δ = min{δ1, δ2} > 0.
Then, by construction, for all x ∈ B ′δ(x̄) ∩ X we have that |f(x) − ȳ1| < ε/2 and
|g(x) − ȳ2| < ε/2, which implies, by triangle inequality, that

|(f+ g)(x) − (ȳ1 + ȳ2)| 6 |f(x) − ȳ1|+ |g(x) − ȳ2| < ε.

For the second statement, note first that if α = 0 the proof is trivial. Then, consider
α 6= 0. Since limx→x̄ f(x) = ȳ1 ∈ R, then for all ε > 0, there is some δ > 0 such that,
for all x ∈ B ′δ(x̄)∩X, |f(x) − ȳ1| < ε/|α|. This implies that

|(αf)(x) −αȳ1| = |α(f(x) − ȳ1)| = |α||f(x) − ȳ1| < ε,

and, therefore, that limx→x̄(αf)(x) = αȳ1.

Given the relationship found in Theorem 2.6.6 , it comes as no surprise that a
theorem analogous to the previous one holds for sequences.

Theorem 2.6.8. Let (an)
∞
n=1 and (bn)

∞
n=1 be two sequences in R. Suppose that

for numbers a,b ∈ R, we have that limn→∞ an = a and limn→∞ bn = b. Then,

1. limn→∞(an + bn) = a+ b;

2. limn→∞(αan) = αa, for all α ∈ R;

3. limn→∞(an.bn) = a.b; and
4. if b 6= 0 and bn 6= 0 for all n ∈N, then limn→∞(an/bn) = a/b.

The proof of the first two parts is left as an exercise. The following theorem is also
very useful:
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Theorem 2.6.9. For sequences (an)
∞
n=1 (in R) such that an > 0 for all n ∈ N,

the following equivalence holds:

lim
n→∞an =∞⇔ lim

n→∞ 1
an

= 0.

Proof. Let us prove the sufficiency statement, leaving necessity as an exercise. Suppose
that limn→∞(1/an) = 0 and fix ∆ > 0. Then, for some n∗ ∈ N one has that
|1/an − 0| < 1/∆ when n > n∗; since each an > 0, it follows that an > ∆.

Exercise 2.6.8. Repeat the last part of Exercise 2.6.1, using the previous theorem.
Is it easier? Show that

lim
n→∞

(
15n5 + 73n4 − 118n2 − 98

30n5 + 19n3

)
=

1
2
.

A very useful property of limits (for both sequences and functions) is that they
preserve weak inequalities. This is the content of the following theorem, whose proof
is left as an exercise.

Theorem 2.6.10. Consider a sequence (an)
∞
n=1 in R and a number a ∈ R. If

an 6 α, for all n ∈N, and limn→∞ an = a, then a 6 α. Similarly, if an > α, for
all n ∈N, and limn→∞ an = a, then a > α.

Exercise 2.6.9. Can we strengthen our results to say: “Consider a sequence (an)∞n=1
in R and a number a ∈ R. If an < α, for all n ∈ N, and limn→∞ an = a, then
a < α.”?

The next result is the counterpart for limits of functions; again, the proof is left as
an exercise.

Theorem 2.6.11. Consider f : X → R and ȳ ∈ R, and let x̄ ∈ RK be a limit point
of X. If f(x) 6 γ for all x ∈ X, and limx→x̄ f(x) = ȳ, then ȳ 6 γ. Similarly, if
f(x) > γ for all x ∈ X, and limx→x̄ f(x) = ȳ, then ȳ > γ.

Exercise 2.6.10. The previous theorem can be proved by two different arguments.
Can you give them both? (Hint: one argument is by contradiction; the other one
uses Theorem 2.6.10 directly.)

Corollary 2.6.1. Consider f : X → R and g : X → R, let ȳ1, ȳ2 ∈ R, and let
x̄ ∈ RK be a limit point of X. If f(x) > g(x), for all x ∈ X, limx→x̄ f(x) = ȳ1 and
limx→x̄ g(x) = ȳ2, then ȳ1 > ȳ2.

Obviously, a sequence (an)
∞
n=1 in RK is nothing but an array of K sequences in R:

sequence (ak,n)
∞
n=1 for each k = 1, . . . ,K. So, it should not come as no surprise that

some relations exist between these objects.

Theorem 2.6.12. Sequence (an)
∞
n=1 in RK is bounded if, and only if, for each

k = 1, . . . ,K, sequence (ak,n)
∞
n=1 in R is bounded.

Theorem 2.6.13. Sequence (an)
∞
n=1 in RK converges to a if, and only if, for each

k = 1, . . . ,K, sequence (ak,n)
∞
n=1 in R converges to ak.

Proof. Let us prove sufficiency first. Given any ε > 0, for each k there is some n∗k ∈N

such that |ak,n − ak| < ε/
√
n whenever n > n∗k. Letting n∗ = max{n∗1, . . . ,n

∗
K} ∈ N
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and n > n∗, by construction,

‖an − a‖ =

(∑
k

(ak,n − ak)
2

)1/2

<

(∑
k

ε2

K

)1/2

= ε.

For necessity, fix k and let ε > 0. By assumption, there is n∗ ∈ N after which
‖an − a‖ < ε, which suffices to imply that |ak,n − ak| < ε.

2.7 Euler’s Number and the Natural Logarithm

One of the must important numbers in mathematics is Euler’s Number,
which is

e = lim
n→∞

(
1+

1
n

)n
.

It can be shown (later you will) that

e =

∞∑
n=0

1
n!

,

and, numerically, e = 2.71828182 . . .. For x ∈ R++, we define the natural logarithm
of x, denoted ln(x), as the number y such that ey = x.

2.8 Application: The Value of a Perpetuity

A perpetuity is an asset that promises to pay a constant return, which we denote
by R, periodically, ad infinitum. Suppose that the interest rate is r > 0 at all future
periods. Then, the present value of the perpetuity is

V = R+
R

1+ r
+

R

(1+ r)2
+

R

(1+ r)3
+ . . . ,

where the sum in the right-hand side contains the term R/(1+ r)T , for all T ∈ N.15 15 Indeed, it contains infinitely many
non-trivial summands!Factoring out the constant R, we write

V = R

∞∑
t=0

1
(1+ r)t

,

where the infinite sum ∞∑
t=0

1
(1+ r)t

is defined as the limit of the sequence(
T∑
t=0

1
(1+ r)t

)∞
T=1

,

provided that this limit exists.
Denoting, for simplicity, δ = 1/(1+ r), we can simply write V = R

∑∞
t=0 δ

t. Also,
we can write vT =

∑T
t=0 δ

t, so that V = R× limT→∞ vT , if this limit exists.
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Exercise 2.8.1. Argue that, if |δ| < 1, limT→∞ δT = 0.

Note that

vT (1− δ) =
T∑
t=0

δt − δ

T∑
t=0

δt =

T∑
t=0

δt −

T+1∑
t=1

δt = 1− δT+1,

so, if δ 6= 1,16 we have that 16 Namely if r 6= 0.

vT =
1

1− δ
−
δT+1

1− δ
.

And it now follows from Exercise 2.8.1 that if we further assume that |δ| < 1,17 then 17 Which is the case, since r > 0.

vT → 1/(1− δ) and V = R/(1− δ) = R(1+ r)/r.

2.9 Application: Choice under Uncertainty

Consider the case in which the consequences of a decision-maker’s choices are
not fully determined by her, and are subject to uncertainty. For this purpose, it is
useful to endow the choice problem with a probabilistic framework. A state of the
world is a comprehensive description of the state of all the contingencies that can affect
a decision-maker.18 Let S be the set of states of the world. A random variable is a 18 In the words of K. Arrow (1971, Es-

says on the Theory of Risk Bearing, p.
45.), it is «a description of the world so
complete that, if true and known, the
consequences of every action would be
known.»

function whose domain is S. If the codomain of a random variable is the set Y, we say
that it is a random variable over Y.

Let X 6= ∅ be a set of outcomes (or prospects),19 and let ∆ be the space of all prob-
19 This could be an abstract set, or, if
you would like more definiteness, a set
X ⊆ R, of monetary values.

ability distributions over X. For example, if X is finite, we can write X = {1, . . . ,X},
and, then, ∆ = {p ∈ RX+ |

∑
x px = 1}.

In general, a lottery is defined as a random variable over ∆: it is a function L : S→ ∆.
That is, a lottery is a device that assigns to each state of the world, s, a probability
distribution over the set of prospects, ps = L(s); under this device and given that
state, the probability of prospect x is psx = L(s)(x), and

∫
X L(s)(x) dx = 1.

A lottery fixes the probability of a prospect, given a state, but it does not determine
the probability of that state. It is commonly interpreted that the probabilities of
states are exogenous to economic models, and are usually taken to be subjective to
the decision-maker, whereas the probabilities induced by lotteries, given a state, are
objective. A full theory that handles both types of probability is possible, but here,
for simplicity, we will deal with only one of the two types of uncertainty at a time.20

20 In fact, a richer theory where the
decision maker is unsure of what sub-
jective probabilities to assign to states
of the world is possible. Often, peo-
ple reserve the term «uncertainty» for
the latter phenomenon, and use «risk»
for the randomness that remains even
when probabilities (subjective and ob-
jective) are fixed. Here, we won’t need
this distinction.

2.9.1 Preferences over lotteries

For simplicity, let us assume that there is only one state of the world, so that we can
ignore the set S and can refer to ∆ itself as the space of lotteries: in the language of
the general setting introduced above, we will now study a problem where the choice
space D is the set of lotteries ∆. Henceforth, we assume that % is rational, and define
� and ∼ as before.

Conceptually, while it may seem to follow naturally that the individual’s preferences,
%, are a binary relation over ∆, it should be noted that when we define preferences
in this way, we are imposing the condition that the individual cares about the risk
(randomness) she faces, and not about the process that ultimately determines that
risk; this condition is known as «consequentialism.»
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2.9.2 Further properties of preferences

We say that % satisfies monotonicity if given two lotteries, p and p ′ such that p � p ′,
the following statement is true: αp+(1−α)p ′ � βp+(1−β)p ′ if, and only if, α > β.
In words, a decision-maker with monotonic preferences prefers more of a better lottery
to more of a worse lottery.

Another condition imposes that the decision-maker values the outcomes of the lot-
teries for themselves and then, independently, the randomness induced over them by
the lottery: we say that % satisfies independence if given two lotteries p and p ′, the
following statements are true:

1. if p % p ′, then for any number 0 6 α 6 1 and any lottery p ′′ we have that

αp+ (1−α)p ′′ % αp ′ + (1−α)p ′′;

2. if for some number 0 < α < 1 and some lottery p ′′ we have that

αp+ (1−α)p ′′ % αp ′ + (1−α)p ′′,

then p % p ′.

The latter property is controversial, and we will come back to it later. The following
exercises relate the two properties.

Exercise 2.9.1. Argue that independence of % implies the following property: for
any pair of lotteries p and p ′:

1. if p ∼ p ′, then for any 0 6 α 6 1 and any lottery p ′′,

αp+ (1−α)p ′′ ∼ αp ′ + (1−α)p ′′;

2. if for some 0 < α 6 1 and some lottery p ′′ we have that

αp+ (1−α)p ′′ ∼ αp ′ + (1−α)p ′′,

then p ∼ p ′.

3. if p � p ′, then for any 0 < α < 1 and any lottery p ′′,

αp+ (1−α)p ′′ � αp ′ + (1−α)p ′′;

4. if for some 0 < α < 1 and some lottery p ′′ we have that

αp+ (1−α)p ′′ � αp ′ + (1−α)p ′′,

then p � p ′; and

5. if p � p ′ and 0 < α < 1, then p � αp+ (1−α)p ′ and αp+ (1−α)p ′ � p ′.

Exercise 2.9.2. Argue that independence of % implies its monotonicity.21

21 This exercise is a tiny bit more com-
plicated than the others. Hint 1: sup-
pose that you want to write

βp+(1−β)p ′

as

γp+(1−γ)(αp+(1−α)p ′),

given that β > α; what value must
γ have? Hint 2: now, notice the last
property of Exercise 2.9.1.

2.9.3 Expected-utility representability

We again ask the question of when % can be represented by a utility function. But in
the current setting of uncertainly, we may want to have special properties on the utility
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function that represents the person’s preferences: we say that % has an expected-utility
representation if there exists a function u : X→ R such that for any pair of lotteries
p and p ′, we have that p % p ′ if, and only if, Ep(u) > Ep ′(u). In this case, we can
define the utility function over lotteries U(p) = Ep(u), and it is immediate that U
represents %.22 22 A couple of words on jargon are

in order, for sometimes different things
are given the same name in eco-
nomics: some people refer to u as
«Bernoulli utility function» and to U
as «von Neumann-Morgenstern utility
function,» while some other people re-
fer to u itself as the «von Neumann-
Morgenstern utility function,» and
some other people use both names for
u and leave U nameless. This can be
problematic, as the two functions are
not the same thing: u measures utility
over outcomes, whileU does it over lot-
teries. Here, we will refer to U as the
utility function and to u as the utility
index.

Exercise 2.9.3. Argue that if % has an expected-utility representation then it
satisfies independence.

Exercise 2.9.4. Consider a decision-maker who faces uncertainty over a finite
set of possible outcomes, X = {1, 2, . . . ,X}

1. Suppose that there are only three possible outcomes and the individual’s pref-
erences over lotteries are that p % p ′, if, and only if,

p1 > p
′
1 or (p1 = p ′1 and p2 > p

′
2).

Argue that p ∼ p ′ if, and only if, p = p ′.

2. Suppose, alternatively, that the individual’s preferences are represented by the
following function:

U(p) =

{
1, if px = 1/X for all x;
0, otherwise.

Argue that the individual’s preferences do not satisfy the following property:
for all p and p ′ and all α ∈ [0, 1], if p ∼p ′, then αp+ (1−α)p ′ ∼p ′.

3. Suppose now that the individual has the following preferences: for all p and
p ′, it is true that p % p ′. Find a Bernoulli index for the expected-utility
representation of these preferences.

4. Argue that, in any case, if the individual’s preferences have an expected-utility
representation with Bernoulli index u(x), then the index ũ(x) = au(x) + b, for
any numbers a > 0 and b, also represents %: it is true that p % p ′ if, and only
if,

X∑
x=1

pxũ(x) >
X∑
x=1

p ′xũ(x).

A seminal result is decision theory is the following:

Theorem (The von Neumann–Morgenstern Theorem). Suppose that % satisfies the
following continuity assumption: for any x, x ′, x ′′ ∈ X such that x % x ′ % x ′′, we
can find a number 0 6 p 6 1 such that (p, x, x ′′) ∼ x ′. If % satisfies independence,
then it has an expected-utility representation (with continuous index u).

Here, we give an informal argument for why the von Neumann-Morgenstern theorem
is true. For simplicity, we concentrate only on a small subclass of lotteries, rather than
on the whole space ∆.

We say that a lottery is simple if it gives positive probability to at most two outcomes
in X.23 For simplicity, then, we can denote a simple lottery as a triple consisting of

23 The term «simple» is normally used
for lotteries that pay in outcomes and
not in other lotteries; here, I am using
it is that sense, but making it stronger
to require that they pay in only one or
two outcomes.a number and two outcomes, L = (p, x, x ′), with 0 6 p 6 1 and x, x ′ ∈ X, and with
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the interpretation that the lottery gives outcome x with probability p, and outcome
x ′ with probability 1− p. Let L1 be the space of simple lotteries, L1 = [0, 1]×X×X.

A compound lottery is a device that gives other lottery or lotteries as prizes. We
will concentrate on compound lotteries that give positive probability to at most two
simple lotteries,24 and denote them by (p,L,L ′), a number and two simple lotteries,

24 As before, the term «compound» is
normally used for lotteries that pay in
other lotteries; here, I am using it is
that sense, but making it stronger to
require that they pay in only one or
two lotteries.

L,L ′ ∈ L1. Let L2 be the space of compound lotteries, L2 = [0, 1]×L1 ×L1.
For our argument, we consider only degenerate, simple and our simplified definition

of compound lotteries, so we take % as defined over L = X∪L1 ∪L2. In order to keep
consistency with the analysis above, we need consider an individual who cares about
outcomes, and not about how these outcomes are presented, so we impose the following
«consequentialist» assumptions on %: for all p,p ′ ∈ [0, 1] and for all x, x ′ ∈ X,

1. (p, x, x ′) ∼ (1− p, x ′, x);

2. (1, x, x ′) ∼ x;

3. (p, (p ′, x, x ′), x ′) ∼ (pp ′, x, x ′).

For simplicity, suppose also that we can find x∗, x∗ ∈ X such that for every outcome
x ∈ X we have that x % x∗ and x∗ % x.

Exercise 2.9.5. Argue that:

1. x � x ′ and 0 6 p ′ < p 6 1 imply that (p, x, x ′) � (p ′, x, x ′);

2. L � L ′ and 0 6 p ′ < p 6 1 imply that (p,L,L ′) � (p ′,L,L ′);

3. if x % x ′, then for any x ′′ and any 0 6 p 6 1 it is true that (p, x, x ′′) %
(p, x ′, x ′′);

4. if for some x ′′ and some 0 6 p 6 1 it is true that (p, x, x ′′) % (p, x ′, x ′′), then
x % x ′;

5. if L % L ′, then for any L ′′ and any 0 6 p 6 1 it is true that (p,L,L ′′) %
(p,L ′,L ′′);

6. if for some L ′′ and some 0 6 p 6 1 it is true that (p,L,L ′′) % (p,L ′,L ′′), then
L % L ′.

Since % satisfies continuity and monotonicity, it is relatively easy to construct a
utility function representing it over the space of simple lotteries: by continuity, for any
lottery in L, we can find p ∈ [0, 1] such that L ∼ (p, x∗, x∗); by monotonicity, such
p ∈ [0, 1] has to be unique; then, just let U : L→ R be defined by letting U(L) be the
unique number p ∈ [0, 1] such that L ∼ (p, x∗, x∗).

Since L includes degenerate lotteries, we can define u : X → R by letting u(x) =

U((1, x, x)). Now, we just want to show that the expected utility property is satisfied
in the following sense: for every simple lottery (p, x, x ′),

U((p, x, x ′)) = pu(x) + (1− p)u(x ′).

Notice that, by construction,

(p, x, x ′) ∼ (U((p, x, x ′)), x∗, x∗),
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whereas, by independence,

(p, x, x ′) ∼ (p, (u(x), x∗, x∗), (u(x ′), x∗, x∗)).

By direct computation, it follows that

(p, x, x ′) ∼ (pu(x) + (1− p)u(x ′), x∗, x∗),

which implies, by monotonicity, that U((p, x, x ′)) = pu(x) + (1 − p)u(x ′), as we
wanted.

Exercise 2.9.6. Argue the following: If U is an expected-utility representation of
%, then it satisfies the following «linearity» property: for any pair of lotteries p
and p ′ and any number 0 6 α 6 1,

U(αp+ (1−α)p ′) = αU(p) + (1−α)U(p ′).

Theorem 2.9.1. Suppose that U and Ũ are expected-utility representations of %.
Let u and ũ be their respective utility indices. There exist numbers α and β > 0
such that ũ(x) = α+βu(x) for every x.

The previous proposition is important: only positive affine transformations of a
utility index preserve the expected-utility representation of %;25 this means that u 25 Don’t get confused: any monotone

transformation ofU will represent % as
well; but the transformation need not
preserve the expected-utility property,
which is what requires affinity.

itself is a cardinal object.





3
Topology of RK

From now on, we deal only with subsets of RK, for a finite number K; that
is, whenever we introduce sets X or Y, we assume that X, Y ⊆ RK and use all the
algebraic structure of RK. We also use the structure induced in RK by the Euclidean
norm. Whenever we take complements, they are relative to RK.

3.1 Open and Closed Sets

The two key concepts in topology are those of open and closed sets. Intuitively,
a set is open if, at any point in the set, one is allowed to «move freely». Intuitively, a
set is closed if one has to «jump» in order to get out of it.

3.1.1 Open sets

Definition 3.1.1. Set X is open if for all x ∈ X, there is some ε > 0 for which
Bε(x) ⊆ X.

Example 3.1.1 (Open intervals are open sets in R). We define an open interval,
denoted (a,b),1 where a,b ∈ R, as {x ∈ R | a < x < b}. To see that these are 1 Sometimes open intervals are de-

noted by ]a,b[ rather than (a,b) in
order to distinguish them from ordered
pairs in R2. We will, however, follow
the more standard notation.

open sets (in R), take x ∈ (a,b), and define ε = min{x − a,b − x}/2 > 0. By
construction, Bε(x) ⊆ X. As a consequence, notice that open balls are open sets
in R. The same is true in RK, for any K.

It is easy to see that if we extend the definition of the open interval (a,b) to the
case where a,b ∈ R ∪ {∞,−∞}, then it continuous to be true that open intervals are
open sets. The following theorem is a specific instance of a more general principle: in
any space, the empty set and the universe are open sets.

Theorem 3.1.1. The empty set and RK are open.

Proof. A set X fails to be open if one can find x ∈ X such that for all ε > 0 one has
that Bε(x)∩Xc 6= ∅. Clearly, ∅ cannot exhibit such property. The argument that RK

is open is left as an exercise.

Theorem 3.1.2. The union of any collection of open sets is an open set. The
intersection of any finite collection of open sets is an open set.
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Proof. For the first statement, suppose that Z is the union of a given collection of
open sets,2 and suppose that x ∈ Z. By definition, then, there exists a member X of 2 Whether finite or infinite.

the collection of sets such that x ∈ X. By assumption, X is open, so that for some
ε > 0 one has that Bε(x) ⊆ X, and it follows, then, that Bε(x) ⊆ Z.

For the second part, suppose that Z is the intersection of a finite collection of open
sets, say {X1,X2, . . . ,Xn∗ }, and suppose that x ∈ Z. By definition, then, for each n =

1, 2, . . . ,n∗, it is true that x ∈ Xn. By assumption, each Xn is open, so that there exists
εn > 0 such that Bεn(x) ⊆ Xn. Let ε = min{ε1, ε2, . . . , εn∗ } > 0. By construction, for
each n, we have that Bε(x) ⊆ Bεn(x) ⊆ Xn and therefore Bε(x) ⊆ Z.

We say that point x is an interior point of the set X, if there is some ε > 0 for
which Bε(x) ⊆ X. The set of all the interior points of X is called the interior of X,
and is usually denoted int(X).3 Note that int(X) ⊆ X. 3 Alternative, but also usual notation

is Xo.
Exercise 3.1.1. Show that for every X, int(X) is open and that X is open if, and
only if, int(X) = X.

Exercise 3.1.2. Prove that if x ∈ int(X), then x is a limit point of X.

Exercise 3.1.3. Did we really need finiteness in the second part of Theorem 3.1.2?
Consider the following infinite collection of open intervals: for all n ∈N, define
In = (−1/n, 1/n). Find the intersection of all those intervals, denoted ∩∞n=1In.
Is it an open set?

3.1.2 Closed sets

Definition 3.1.2. Set X is closed if for every sequence (xn)
∞
n=1 in RK that satisfies

that xn ∈ X, at all n ∈ N, and for which there is some x̄ ∈ RK to which it
converges, we have that x̄ ∈ X.

Given a set X ⊆ RK, we define its closure, denoted by cl(X), as the set4 4 Alternative notation is X̄.

cl(X) = {x ∈ RK | ∀ε > 0,Bε(x)∩X 6= ∅}.

As before, the empty set and the universe are closed sets.

Theorem 3.1.3. The empty set and RK are closed.

Proof. In order for set X to fail to be closed, there has to exist (xn)
∞
n=1 satisfying

that all xn ∈ X, and that xn → x̄, yet x̄ /∈ X. Clearly, one cannot find such sequence
if X = ∅. The argument for RK is left as an exercise.

Recall that ∅ and RK are also open. In RK these are the only two sets that have
both properties;5 we will prove this result later, but state it here as a theorem for 5 But this principle does not generalize

to other spaces.K = 1:

Theorem 3.1.4 (Conectedness of R). Let A,B ⊆ R be open and disjoint. If A∪B =

R, then either A = ∅ or B = ∅.

Exercise 3.1.4. If a,b ∈ R ∪ {−∞,∞}, a < b, is (a,b) closed? We define the
half-closed interval (a,b], where a ∈ R ∪ {−∞}, b ∈ R, a < b, as (a,b] = {x ∈
R | a < x 6 b}. Similarly, we define the half-closed interval [a,b) where a ∈ R,
b ∈ R∪ {∞}, a < b, as [a,b) = {x ∈ R | a 6 x < b}. Are half-closed intervals closed
sets? Are they open? If x ∈ RK, is {x} an open set, a closed set or neither?



short course on real analysis for economics 35

Theorem 3.1.5. A set X is closed if, and only if, Xc is open.

Proof. Suppose that Xc is open, and consider any sequence (xn)
∞
n=1 satisfying that

all xn ∈ X and converging to some x̄; we need to show that x̄ ∈ X. In order to argue
by contradiction, suppose that x̄ ∈ Xc. Since Xc is open, there is some ε > 0 for which
Bε(x̄) ⊆ Xc. Since xn → x̄, there is n∗ ∈ N such that ‖xn − x̄‖ < ε when n > n∗.
Then, for any n > n∗, we have that xn ∈ Bε(x̄) ⊆ Xc, which is impossible.

Suppose now that X is closed, and fix x ∈ Xc. We need to show that for some
ε > 0 one has that Bε(x) ⊆ Xc. Again, suppose not: for all ε > 0, it is true that
Bε(x)∩X 6= ∅. Clearly, then, for all n ∈N we can pick xn ∈ B1/n(x)∩X. Construct
a sequence (xn)

∞
n=1 of such elements. Since 1/n → 0 it follows that xn → x, and all

xn ∈ X and X is closed, then x ∈ X, contradicting the fact that x ∈ Xc.

Theorem 3.1.6. The intersection of any collection of closed sets is closed. The
union of any finite collection of closed sets is closed.

Proof. This argument is left as an exercise. (Hopefully, you can use the generalized
version of DeMorgan’s laws that you proved in Exercise 1.2.1.)

Exercise 3.1.5. Prove that, given a set X ⊆ RK, x ∈ cl(X) if, and only if, there
exists a sequence (xn)

∞
n=1 in X such that xn → x.

Exercise 3.1.6. Prove that for every set X ⊆ RK, X ⊆ cl(X), and X is closed if,
and only if, X = cl(X).

Example 3.1.2. Closed intervals are closed sets. We define an closed interval,
denoted [a,b], where a,b ∈ R and a 6 b as {x ∈ R | a 6 x 6 b}. To see that
these are closed sets, notice that [a,b]c = (−∞,a)∪ (b,∞), and conclude based on
previous results.

Exercise 3.1.7. Did we really need finiteness in the second part of Theorem 3.1.6?
Consider the following infinite collection of closed intervals: for all n ∈N, define
Jn = [1+ 1/n, 3− 1/n]. Find the union of all those intervals, denoted ∪∞n=1Jn. Is
it a closed set?

Exercise 3.1.8. A point x ∈ RK is said to be in the boundary of set X ⊆ RK, if for
all ε > 0, Bε(x)∩X 6= ∅ and Bε(x)∩Xc 6= ∅. Let bd(X) be the set of all points in
the boundary of X.6 Argue that bd(X) = cl(X) \ int(X). 6 Alternative notation is X∂.

3.2 Compact Sets

A set X ⊆ RK is said to be bounded above if there exists α ∈ RK such that x 6 α
for all x ∈ X; it is said to be bounded below if for some β ∈ RK one has that x > β
is true for all x ∈ X; and it is said to be bounded if it is bounded above and below.

Exercise 3.2.1. Show that a set X is bounded if and only if there is some α ∈ R+

for which one has that ‖x‖ 6 α for all x ∈ X.

Definition. A set X ⊆ RK is said to be compact if it is closed and bounded.
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The previous definition is fine for subsets of RK but this is not true for more general
spaces. The general concept (in topology) is that a set is compact if, whenever you can
"cover" it with a collection of open sets, then you can also do it with finitely many of
those sets (people usually say: "if every open cover has a finite subcover").

Exercise 3.2.2. Prove the following statement: if (xn)∞n=1 is a sequence defined
on a compact set X, then it has a subsequence that converges to a point in X.

3.3 Infimum and Supremum

Fix a nonempty set X ⊆ R. A number α ∈ R is said to be an upper bound of X
if x 6 α for all x ∈ X, and is said to be a lower bound of X if the opposite inequality
holds. Number α ∈ R is said to be the least upper bound of X, denoted α = sup X,
if: (i) α is an upper bound of X; and (ii) γ > α for any other upper bound γ of X.
Analogously, number β ∈ R is said to be the greatest lower bound of X, denoted
β = inf X, if: (i) β is a lower bound of X; and (ii) if γ is a lower bound of X, then
γ 6 β.

Theorem 3.3.1. Let X 6= ∅, X ⊆ R. α = sup X if, and only if, for all ε > 0 it is
true that (i) for all x ∈ X, one has that x < α + ε; and (ii) for some x ∈ X one
has that α − ε < x.

The proof of the previous theorem is left as an exercise. Now, remember that in
Chapter 1, we announced one axiom of R that is not satisfied by the Rationals? It is
the following:

Axiom 3.3.1 (Axiom of Completeness). Let X ⊆ R be nonempty. If X is bounded
above, then it has a least upper bound.

The Axiom of Completeness gives us the tool for a formal proof of the Bolzano-
Weierstrass Theorem (2.6.5), as well as the proof of Theorem 3.1.4.

Proof of Theorem 2.6.5: By Theorems 2.6.12 and 2.6.13, it suffices that we consider
just the case K = 1. Since (an)

∞
n=1 is bounded, there exists a ∈ R such that,

−a < an < a for all n. Define the set

X = {x ∈ R | an > x for infinitely many terms of (an)∞n=1 }

Since −a ∈ X and for all x ∈ X, x 6 a, it follows from Axiom 3.3.1 that X has a least
upper bound. Let α = sup X. Fix ε > 0 and ñ ∈ N. By definition, α + ε/2 /∈ X,
which means that for some n∗ ∈ N one has that an < α + ε for all n > n∗. Now, if
there is n̂ ∈ N that satisfies that, for all n > n̂, inequality an < α − ε/2 holds, then,
it follows that if x ∈ X, then x 6 α − ε/2, which contradicts the fact that α = sup X.
So, it must be that for all n̂ ∈ N, one can find some n > n̂ for which an > α − ε/2
is true. It follows, then, that there is n > ñ, such that α − ε < an < α + ε.

Then, we can define a sequence (nm)∞m=1, as follows:

n1 = min{n ∈ N | α − 1 < an < α + 1},
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and, recursively,

nm = min{n ∈ N | n > nm−1 ∧ α − 1/m < an < α + 1/m}.

It is straightforward that (anm )∞m=1 is a convergent subsequence of (an)∞n=1.

Proof of Theorem 3.1.4: Suppose otherwise: let A, B ⊆ R be such that A ∩ B = ∅,
A ∪ B = R, A 6= ∅ and B 6= ∅. Fix a ∈ A and b ∈ B, assuming, with no loss of
generality, that a < b.

Let X = A ∩ [a, b] and Y = B ∩ [A, B]. Note that these sets are disjoint and satisfy
that X ∪ Y = [a, b]. Importantly, they satisfy the following properties:

∀x ∈ X, ∃ε > 0 : [x, x + ε) ⊆ X, (∗)

and
∀y ∈ Y , ∃ε > 0 : (y − ε, y] ⊆ Y (∗∗)

Let x̄ = sup X, which exists by Axiom 3.3.1. By construction, x̄ ∈ [a, b]. If x̄ ∈ Y,
by (∗∗), (x̄− ε, x̄] ⊆ Y for some ε > 0. This implies that x̄− ε/2 is an upper bound for
X, which is impossible since x̄ is its least upper bound. If x̄ ∈ X, by (∗), [x̄, x̄+ ε) ⊆ X,
which is impossible since x̄ is an upper bound of X. It follows that x̄ /∈ X ∪ Y, which
contradicts the fact that X ∪ Y = [a, b].

3.4 Application: Consumption Budgets

Consider the problem of a consumer who must choose a bundle of L ∈ N

perfectly divisible commodities. Assume that this individual can only consume non-
negative amounts of these goods, so that her consumption space is RL+. Let p ∈ RL++

denote the prices that are in place. If she has a nominal wealth m that constrains her
purchases of commodities, then her budget set is B(p,m) = {x ∈ RL+ | p · x 6 m}.
We want to observe that this set is compact.

First, let us argue that it is bounded. This is easy to see, for if x ∈ B(p,m), then for
all commodity l = 1, . . . , L, one has that xl 6 m/p̄, where p̄ = min{p1 , . . . , pL} > 0,
given the assumption that no commodity can be consumed in a negative amount.

Now, suppose that x /∈ B(p,m). This can happen for one of two (nonexclusive)
reasons. First, it could be that for some l one has xl < 0; in this case, letting
ε = |xl |/2 > 0, one immediately has that Bε(x) ⊆ B(p,m)c. The other possibility is
that p · x > m; in this case, one can let

ε =
p · x −m
Lmaxl{pl}

> 0,

and note that, if x̃ ∈ Bε(x), then

p · x̃ >
∑
l

pl(xl − ε) > p · x − Lmax
l

{pl}ε = m,

so that x̃ /∈ B(p,m). In any case, for some ε > 0 we have that Bε(x) ⊆ B(p,m)c,
so we conclude that B(p,m)c is open and, hence, by Theorem 3.1.5, that B(p,m) is
closed.





4
Continuity

Throughout this chapter, maintain the assumption that X is a subset of the
finite-dimensional space RK.

4.1 Continuous Functions

Definition 4.1.1. Function f : X → R is continuous at x̄ ∈ X if for all ε > 0, there
exists δ > 0 such that |f(x) − f(x̄)| < ε for all x ∈ Bδ(x̄) ∩ X. It is continuous if it
is continuous at all x̄ ∈ X.

Note that continuity at x̄ is a local concept. Second, note that x̄ in the definition
may but need not be a limit point of X. Therefore, two points are worth noticing: if x̄
is not a limit point of X, then any f : X → R is continuous at x̄ (why?); and if, on the
other hand, x̄ is a limit point of X, then f : X → R is continuous at x̄ if, and only if,
limx→x̄ f(x) = f(x̄). Intuitively, this occurs when a function is such that in order to
get arbitrarily close to f(x̄) in the range, all we need to do is to get close enough to x̄
in the domain. By Theorem 2.6.6, it follows that when x̄ ∈ X is a limit point of X, f
is continuous at x̄ if, and only if, whenever we take a sequence of points in the domain
that converges to x̄, the sequence formed by their images converges to f(x̄) (that in
this case the concept is not vacuous follows from Exercise 2.6.5).

Exercise 4.1.1. Consider the function introduced in Exercise 2.6.7. Is it contin-
uous?

Exercise 4.1.2. Consider the function introduced in Example 2.6.1. Is it contin-
uous? What if we change the function, slightly, as follows: f : R → R, defined
as

f(x) =


1, if x > 0;
0, if x = 0;
−1, if x < 0.

Is it continuous?

4.2 Images and Pre-Images under Continuous Functions

The following result offers a characterization of the definition of continuity.
This result has been useful in economics.
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Theorem 4.2.1. Function f : RK → R is continuous if, and only if, for all open
set U ⊆ R, one has that f−1 [U] is open.

Proof. Fix x̄ ∈ RK and ε > 0. By Example 3.1.1, we know that Bε(f(x̄)) is open and,
therefore, so is f−1 [Bε(f(x̄))]. Since x̄ ∈ f−1 [Bε(f(x̄))], we have that there exists
some δ > 0 for which Bδ(x̄) ⊆ f−1 [Bε(f(x̄))]. For such δ, the latter means that that
for all x ∈ Bδ(x̄) one has that |f(x) − f(x̄)| < ε.

Now, let U ⊆ R be an open set, and let x̄ ∈ f−1 [U]. By definition, f(x̄) ∈ U, and
since U is open, there is some ε > 0 for which Bε(f(x̄)) ⊆ U. Since f is continuous,
there exists δ > 0 such that |f(x) − f(x̄)| < ε for all x ∈ Bδ(x̄). The latter implies
that Bδ(x̄) ⊆ f−1 [U].

I stated the previous theorem in a weaker form than it really has to be. Actually,
we don’t really need the domain of f to be RK. If the domain is X ⊆ RK, the result
continues to hold, but we need to qualify the definition of open set, to make it relative
to the set X. We implicitly do that in the following theorem, which we leave without
proof.

Theorem 4.2.2. Function f : X → R is continuous if, and only if, for every open
set U ⊆ R, there exists an open set O ⊆ RK such that f−1 [U] = O ∩ X.

Of course, analogous results for the pre-images of closed sets follow. Importantly,
continuous functions also preserve some properties on the images of sets.

Theorem 4.2.3. If function f : X → R is continuous and set C ⊆ X is compact,
then set f[C] is compact too.

Proof. Let (yn)
∞
n=1 be a sequence in f[C] and such that yn → y. Fix (xn)

∞
n=1

in C such that f(xn) = yn. Since C is bounded, by Theorem 2.6.5 there exists a
subsequence (xnm )∞m=1 that converges to some x, with x ∈ C because C is closed.
By continuity, y = limm→∞ ynm = limm→∞ f(xnm ) = f(x), so y ∈ f[C].

Now, suppose that for all ∆ ∈ R, there is y ∈ f[C] such that |y| > ∆. Then, for
all n ∈ N, there is xn ∈ C for which |f(xn)| > n. Since C is compact, as before,
there exists a subsequence (xnm )∞m=1 that converges to some x ∈ C. By continuity,
|f(x)| = limm→∞ |f(xnm )| = ∞, which is impossible.

It is important to note that the result does not hold for sets that are only closed, or
only bounded.

4.3 Properties and the Intermediate Value Theorem

The following properties of continuous functions are derived from the prop-
erties of limits.

Theorem 4.3.1. Suppose that f : X → R and g : X → R are continuous at x̄ ∈ X,
and let α ∈ R. Then, the functions f + g, αf and f.g are continuous at x̄.
Moreover, if g(x̄) 6= 0, then f

g is continuous at x̄.

Proof. This theorem follows from Theorem 2.6.7. For example, if x̄ is a limit point of X,
then, continuity of f and g at x̄ implies that limx→x̄ f(x) = f(x̄) and limx→x̄ g(x) =
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g(x̄). Since f(x̄) ∈ R and g(x̄) ∈ R, it follows from Theorem 2.6.7 that

lim
x→x̄

(f + g)(x) = f(x̄) + g(x̄) = (f + g)(x̄),

so that (f + g) is continuous at x̄. The proof of the rest of the theorem is similar.

The following result is very intuitive:

Theorem 4.3.2 (The Intermediate Value Theorem in R). If function f : [a, b] → R

is continuous, then for every number γ between f(a) and f(b) there exists an
x ∈ [a, b] for which f(x) = γ.1 1 It does not matter whether f(a) >

f(b) or f(a) < f(b) – we could simply
have written that γ ∈ [f(a), f(b)] ∪
[f(b), f(a)].

Proof. If γ = f(a) or γ = f(b), the result is obvious. Assume that f(a) < γ < f(b),
and denote S = f−1[(−∞,γ)]. Since a ∈ S, it follows that S 6= ∅. Since S ⊆ [a,b], it
follows that S is bounded. Then, by the Axiom of Completeness (Axiom 3.3.1) we have
that x̄ = supS exists. By definition, for all n ∈N, the number x̄− 1

n is not an upper
bound of S (see Theorem 3.3.1). Hence, for all n there must exist xn ∈ S for which
x̄ − 1

n < xn 6 x̄. Construct such sequence (xn)
∞
n=1. By construction, f(xn) < γ,

whereas, since 1/n→ 0, we have that xn → x̄. And since f is continuous, we have that

lim
n→∞ f(xn) = f(x̄) 6 γ,

where the inequality follows from Theorem 2.6.10.
Now, define x̃n = min{b, x̄+ 1/n}. Consider any n. If x̃n = b, then x̃n /∈ S. Else,

x̃n = x̄+ 1/n > x̄, from where if x̃n ∈ S, we have that for some x ∈ S it is true that
x > supS which is a contradiction. It must then be that every x̃n /∈ S, which implies
that f(x̃n) > γ. Again, since x̃n → x̄,2 we have that 2 Can you see why?

lim
n→∞ f(x̃n) = f(x̄) > γ

by continuity of f and Corollary 2.6.10.
The argument when f(b) < γ < f(a) is similar.

It should be clear that if we consider f defined on X ⊆ RK, even with a,b ∈ X, the
object [a,b] is not well defined. The (line) segment connecting a and b, however, is:

{x ∈ RK | ∃ϑ ∈ [0, 1] : ϑa+ (1− ϑ)b ∈ X}.

The following result generalizes the previous theorem:

Theorem 4.3.3. Let a,b ∈ X be such that the segment connecting them is contained
in X.3 If function f : X→ R is continuous, then for every number γ lying between 3 That is, a and b are such that the

set

{x ∈ RK | ∃ϑ ∈ [0, 1] : ϑa+(1−ϑ)b ∈ X}

is a subset of X

f(a) and f(b), there is some x̄ in the segment connecting a and b for which
f(x̄) = γ.

Proof. Define the function ϕ : [0, 1] → R by ϕ(ϑ) = f(ϑa+ (1− ϑ)b), which we can
do because

{x ∈ RK | ∃ϑ ∈ [0, 1] : ϑa+ (1− ϑ)b ∈ X} ⊆ X.

By construction, ϕ(1) = f(a) and ϕ(0) = f(b). By a later result, Theorem 4.6.1,4 we 4 Which does not require the theorem
we are now showing!have that ϕ is continuous, so it follows that for some ϑ̄ ∈ [0, 1] it is true that ϕ(ϑ̄) = γ.

Let x̄ = ϑ̄a+ (1− ϑ̄)b.
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4.4 Left- and Right-Continuity

When we are dealing with functions defined on X ⊆ R, we can easily identify,
for each x̄ ∈ X, which part of the domain is above x̄ and which one is below. This
property allows us to study how the function behaves as we approach x̄ from above
(the right) or below (the left).

Consider a function f : X→ R, where X ⊆ R. Suppose that x̄ is a limit point of X,
and let ` ∈ R. One says that

lim
x↘x̄

f(x) = `,

when for every ε > 0 there is a number δ > 0 such that |f(x) − `| < ε whenever
x ∈ X ∩ Bδ(x̄) and x > x̄. In such case, ` is said to be the limit of function f as x
tends to x̄ from above. Similarly,

lim
x↗x̄

f(x) = `,

when for every ε > 0 there is δ > 0 such that |f(x) − `| < ε for all x ∈ X ∩ Bδ(x̄)
satisfying that x > x̄. In this case, ` is said to be the limit of function f as x tends
to x̄ from below.

Function f : X→ R is right-continuous at x̄ ∈ X, where x̄ is a limit point of X, if

lim
x↘x̄

f(x) = f(x̄).

It is right-continuous if it is right-countinuous at every x̄ ∈ X that is a limit point of
X. Similarly, f : X→ R is left-continuous at x̄ if

lim
x↗x̄

f(x) = f(x̄),

and one says that f is left-continuous if it is left-continuous at all limit point x̄ ∈ X.

Exercise 4.4.1. Consider the function introduced in Exercise 4.1.2. Is it right-
continuous? Left-continuous? What if, keeping the rest of the function un-
changed, we redefine f(0) = −1? Is it left- or right-continuous? What if f(0) = 1.

4.5 Application: Preferences and Utility Functions

Consider again the situation of Section 3.4. The individual’s preferences are
a complete pre-order % on X = RL+, as in Section 1.5, with � and ∼ defined as there.

In this setting, % is said to be strictly monotone if x > x ′ implies x � x ′, and
strongly convex if for any bundle x, any bundle x ′ 6= x such that x % x ′, and any
scalar 0 < α < 1, it is true that αx+ (1− α)x ′ � x ′. It is continuous if for every
pair of convergent sequences (xn)∞n=1 and (x ′n)

∞
n=1 defined in RL+ and satisfying that

xn % x ′n at all n ∈N, one has that

lim
n→∞ xn % lim

n→∞ x ′n.
Finally, relation % is represented by function u : RL+ → R if u(x) > u(x ′) occurs

if, and only if, x % x ′. The function u that represents % is called a utility function.5

5 Notice that if a preference relation is
representable, then there are infinitely
many different utility functions that
represent it.
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Theorem 4.5.1. Suppose that % is strictly monotone, strongly convex and contin-
uous. Then, it can be represented by a continuous utility function.

Proof. The argument is constructive: for each x ∈ RL+, define u(x) as the number
for which u(x)e ∼ x, where e = (1, . . . , 1), provided that such number exists and is
uniquely defined. For this assignment to constitute a function, we must show that
such number does indeed exist and, moreover, is unique. So, fix x, and define the sets

B = {t ∈ R+ | te % x} and W = {t ∈ R+ | x % te},

both of which are closed, since % is continuous. Also, since % is strictly monotone,
by the Axiom of Completeness there exist numbers t̄ and t such that B = [t,∞) and
W = [0, t]. Given that % is complete, we further have that R+ = B ∪W, from where
t 6 t, and, therefore, B∩W 6= ∅, which implies that at least one number that can be
assigned as u(x) exists. By monotonicity, such number must be unique.

Now, suppose that x % x ′. By transitivity of %, it must be that u(x)e % u(x ′)e. By
monotonicity, then, u(x) > u(x ′). On the other hand, if u(x) > u(x ′), by monotonicity
we would have that u(x)e % u(x ′)e and by transitivity x % x ′. This proves that u
represents %.

To complete the proof, we need to argue that u is continuous. By Theorem 4.2.2,
it suffices that we show that for all pair of numbers a,b ∈ R+, set u−1[(a,b)] is open,
as a subset of RL+. By monotonicity and transitivity,

u−1[(a,b)] = {x ∈ RL+ | be � u(x)e � ae} = {x ∈ RL+ | be � x � ae}.

That is,

u−1[(a,b)] = {x ∈ RL+ | be � x}∩ {x ∈ RL+ | x � ae}
= {x ∈ RL+ | x % be}c ∩ {x ∈ RL+ | ae % x}c

By continuity, each of the sets on the right-hand side of the expression is open (as a
subset of RL+), since their complements are closed. It follows from Theorem 3.1.2 that
u−1[(a,b)] is open too.

4.6 Continuity of Composite Functions

Fix the sets X ⊆ RK, for a finite dimension K, and Y ⊆ R. Given the functions
f : X → Y and g : Y → R, we define the composite function g ◦ f : X → R by letting
(g ◦ f)(x) = g(f(x)), for all x ∈ X.

Theorem 4.6.1. Suppose that f : X → Y is continuous at x̄ ∈ X, and g : Y → R is
continuous at f(x̄). Then, g ◦ f is continuous at x̄.

Proof. Fix ε > 0. Since g is continuous at f(x̄), there is some γ > 0 such that
|g(y) − g(f(x̄))| < ε for all y ∈ Bγ(f(x̄)) ∩ Y. Since f is continuous at x̄ and γ > 0,
there also is some δ > 0 such that f(x) ∈ Bγ(f(x̄)) for all x ∈ Bδ(x̄) ∩ X. And since
f(x) ∈ Y, we then have that f(x) ∈ Bγ(f(x̄)) ∩ Y, and therefore |g(f(x)) − g(f(x̄))| <
ε for all x ∈ Bδ(x̄) ∩ X, which proves the claim.

Corollary 4.6.1. If f : X → Y and g : Y → R are continuous, g ◦ f is continuous.





5
Differentiability

For simplicity of presentation, we first consider functions defined on R, and
study higher-dimensional spaces later.

5.1 Functions on R

Throughout this section, we maintain the assumption that X ⊆ R is open.
Suppose that we have a function f : X→ R, fix x ∈ X, and define the function

Hx = {h ∈ R \ {0} | x+ h ∈ X}.

Now, for all h ∈ Hx, evaluate the expression

f(x+ h) − f(x)

h
.

Since x is fixed, the expression depends on (is a function of) h only, on the nonempty
(why?) domain Hx. Moreover, since 0 is a limit point of Hx, we can use definition
2.6.1, to study the object

lim
h→0

f(x+ h) − f(x)

h
.

5.1.1 Differentiability

Definition 5.1.1. Function f : X→ R is differentiable at x ∈ X if for some ` ∈ R it
is true that

lim
h→0

f(x+ h) − f(x)

h
= `.

It is differentiable if it is differentiable at all x ∈ X.

Notice that the definition does require the limit to be a real number. Besides, since
we only define limx→x̄ g(x) when x̄ is a limit point of the domain of function g, our
definition of differentiability implicitly requires x to be a limit point of X \ {x} and,
therefore, of X. But it follows from Exercises 3.1.1 and 3.1.2 that this is always the
case since X is open.1

1 One can study differentiability in a
slightly more general context by not
restricting X and only defining the
concept at limit points of the do-
main. In R, applying our definition
to non-interior limit points will encom-
pass the concepts of left- and right-
differentiability, which we won’t cover
here.Suppose that f : X→ R is differentiable at x ∈ X, then we define the derivative of
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f at x, denoted f ′(x), to be the number

f ′(x) = lim
h→0

f(x+ h) − f(x)

h
.

Example 5.1.1. Let f : R→ R be defined by f(x) = x2. We want to know whether
the function is differentiable. Fix x ∈ R. Now, for any h 6= 0,

f(x+ h) − f(x)

h
= 2x+ h,

so, by Exercise 2.6.6, we know that f is indeed differentiable and f ′(x) = 2x at all
x ∈ R.

Example 5.1.2. Let f : R→ R be defined by f(x) = |x|. We want to know whether
the function is differentiable at 0. Fix x = 0 and evaluate, for h 6= 0,

f(x+ h) − f(x)

h
=

{
1, if h > 0;
−1, if h < 0.

By Example 2.6.1, we know that in this case

lim
h→0

f(x+ h) − f(x)

h

does not exist, so f is not differentiable at 0.

A useful characterization of differentiability is the following:

Theorem 5.1.1. A function f : X→ R is differentiable, and has derivative f ′(x) =
`, at x if, and only if, for some ε > 0 and some function ϕ : Bε(0)→ R it is true
that

lim
h→0

ϕ(h)

h
= 0,

while f(x+ h) = f(x) + `h+ϕ(h) for all h ∈ Bε(0).

Proof. Suppose first that there are ε and ϕ that obey the mentioned properties. Then,
by direct computation,

f(x+ h) − f(x)

h
− ` =

ϕ(h)

h
,

from where the fact that
lim
h→0

ϕ(h)

h
= 0

implies the sufficiency claim.
Now, suppose that f is differentiable at x. Since x is open, there is ε > 0 such that

Bε(x) ⊆ X. Define ϕ : Bε(0)→ R by ϕ(h) = f(x+h) − f(x) − `h, which is well defined
since, x+ h ∈ Bε(x) ⊆ X. Then,

ϕ(h)

h
=
f(x+ h) − f(x)

h
− `,

from where, by definition,

lim
h→0

f(x+ h) − f(x)

h
= f ′(x) = `

implies necessity.
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5.1.2 Continuity and differentiability

For simplicity of notation, notice that if h ∈ Hx̄, then there exists x ∈ X for which
x = x̄+ h. Thus, it follows that

lim
h→0

f(x̄+ h) − f(x̄)

h
= lim
x→x̄

f(x) − f(x̄)

x− x̄
.

A very important relation is the following:

Theorem 5.1.2. If a function f : X → R, is differentiable at x̄ ∈ X, then it is
continuous at x̄ ∈ X.

Proof. Since f is differentiable at x̄ ∈ X, limx→x̄(f(x) − f(x̄))/(x − x̄) = ` for some
` ∈ R. By Theorem 2.6.7, then

lim
x→x̄

f(x) = lim
x→x̄

{
f(x̄) +

[
f(x) − f(x̄)

x− x̄

]
(x− x̄)

}
= f(x̄),

so that f is continuous at x̄.

5.1.3 Computing derivatives

There are some very well known rules to compute derivatives.

Theorem 5.1.3. Suppose that functions f : X→ R and g : X→ R are differentiable.
Then for all x ∈ X and all k ∈ R, we have that

1. (f+ g) ′(x) = f ′(x) + g ′(x);

2. (k.f) ′(x) = k.f ′(x);

3. (f.g) ′(x) = g(x)f ′(x) + f(x)g ′(x);

4. if g(x) 6= 0, then (
f

g

) ′
(x) =

g(x)f ′(x) − f(x)g ′(x)

(g(x))2
;

5. (fk) ′(x) = k · f(x)k−1 · f ′(x).

Proof. The first two parts follow straightforwardly from the properties of limits. These
two parts are left as exercise. Once the first part has been proven, the fifth part can
be proven for the case k ∈N using the Principle of Mathematical Induction (over k).
The general case is more complicated and we will not attempt to prove it. We now
prove the third and fourth parts.

For the third part, notice that for x ∈ X, and h ∈ R \ {0} such that x+ h ∈ X,

(f.g)(x+ h) − (f.g)(x)
h

= g(x)
f(x+ h) − f(x)

h
+ f(x+ h)

g(x+ h) − g(x)

h
,

so the claim follows frm Theorems 5.1.1 and 2.6.7.
For the fourth part, notice that, if g(x+ h) 6= 0 and g(x) 6= 0,

(f/g)(x+ h) − (f/g)(x)

h
=

(f(x+ h) − f(x))g(x)

hg(x+ h)g(x)
−

(g(x+ h) − g(x))f(x)

hg(x+ h)g(x)

so the result follows, again, from Theorems 5.1.1 and 2.6.7.



48 andrés carvajal – uc davis

Exercise 5.1.1. Find the derivatives of f(x) =
√
x/(1+ x), f(x) = x/(1+

√
x) and

f(x) = 1/(1+
√
x) at x ∈ R++.2 2 If this has not been (boring) enough

for you, also solve Exercise 2.11 (except
for part k), in page 29 of Simon and
Blume.

Exercise 5.1.2. Let n̄ ∈N. Suppose that each function in the collection fn : X→
R, n = 1, . . . , n̄ is differentiable, and define g : X → R by g(x) = f1(x)× f2(x)×
. . .× fn̄(x). Argue that g is differentiable, compute g ′(x) and show that3,4 3 Hint: use the Principle of Mathemat-

ical Induction.
4 Shorthand notation for the
last two expressions would respec-
tively be g(x) =

∏n̄
n=1 fn(x) and

g ′(x)/g(x) =
∑n̄
n=1 f

′
n(x)/fn(x).

g ′(x)

g(x)
=
f ′1(x)

f1(x)
+
f ′2(x)

f2(x)
+ . . .+

f ′n̄(x)

fn̄(x)
.

Another important result is, whose proof we will not attempt here, even though it
is not complicated, is the following.

Theorem 5.1.4. If x ∈ R, y ∈ R++, then (ex) ′ = ex and ln(y) ′ = 1/y.

5.2 Differentiability of Composite Functions: the Chain Rule

As in Section 4.6, fix X ⊆ R, Y ⊆ R, and f : X→ Y and g : Y → R.

Theorem 5.2.1 (The Chain Rule). Suppose that f : X→ Y is differentiable at x ∈ X,
and g : Y → R is differentiable at f(x). Then, g ◦ f is differentiable at x, and

(g ◦ f) ′(x) = g ′(f(x))f ′(x).

Proof. By definition of derivative, we are interested in

(g ◦ f)(x+ h) − (g ◦ f)(x)
h

=
g(f(x+ h)) − g(f(x))

h
,

for any number h 6= 0 for which x+ h ∈ X. For simplicity of notation, let y = f(x),
denote the set Ω = {k ∈ R | (y+ k) ∈ Y} and define the function ϕ : Ω→ R by

ϕ(k) =

{
g(y+k)−g(y)

k − g ′(y), if k 6= 0;
0, otherwise.

Notice that limk→0ϕ(k) = 0, which, together with the fact that g is continuous (by
Theorem 5.1.2), suffices to ensure that ϕ is continuous, by Theorem 4.3.1. Also, for
all k ∈ Ω it is true that g(y+ k) − g(y) = k(ϕ(k) + g ′(y)).

Denoting kh = f(x+ h) − f(x),5 we have that, for h 6= 0, 5 We keep the subscript h to remark
that k will change as h does. For-
mally, we are introducing a function
k : {h ∈ R | (x+ h) ∈ X} → Ω.
(Notice that this function is continu-
ous.) For simplicity, we are denoting
the function using just the subscript:
we are writing kh rather that k(h).

g(f(x+ h)) − g(f(x))

h
=
kh
h

(ϕ(kh) + g
′(y)).

Now, notice that, by definition,

lim
h→0

kh
h

= lim
h→0

f(x+ h) − f(x)

h
= f ′(x) ∈ R,

whereas6 limh→0ϕ(kh) = limk→0ϕ(k) = 0 and g ′(y) = g ′(f(x)) ∈ R. By Theo- 6 By construction,

lim
h→0

ϕ(k(h)) = lim
h→0

(ϕ ◦k)(h).

Now, by Corollary 4.6.1, ϕ ◦ k is con-
tinuous, so limh→0(ϕ ◦ k)(h) = (ϕ ◦
k)(0) = 0.

rem 2.6.7,

lim
h→0

g(f(x+ h)) − g(f(x))

h
= g ′(f(x))f ′(x) ∈ R,

as claimed.

The following is now immediate.
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Corollary 5.2.1. Suppose that f : X→ Y and g : Y → R are differentiable. Then,
(g ◦ f) : X→ R is differentiable.

5.2.1 Higher order derivatives

Suppose that function f : X→ R is differentiable. Then, for all x ∈ X, there is a unique
number f ′(x) ∈ R. In other words, this means that f ′ : X→ R, for the derivative itself
assigns a real number f ′(x) to each x ∈ X.

If f : X → R, is differentiable and f ′ : X → R is continuous, we say that f is
continuously differentiable. In such case, we say that f ∈ C1, and refer to C1 as the
class of continuously differentiable functions.

Now, suppose that f ∈ C1. If f ′ is differentiable at x ∈ X, we say that f is twice
differentiable at x, and define the second-order derivative of f at x, denoted f ′′(x), to
be the derivative of f ′ at x. In other words, we define f ′′(x) to be (f ′) ′(x), whenever
f ′ is differentiable at x. This means that for some ` ∈ R,

lim
h→0

f ′(x+ h) − f ′(x)

h
= `,

and we let f ′′(x) = `. Consequently, function f : X→ R is said to be twice differentiable
(on X) if it is twice differentiable at all x ∈ X.

As before, if f : X → R is twice differentiable, then f ′′ : X → R. In this case, if
f ′′ : X→ R is continuous, we say that f is twice continuously differentiable and that
f ∈ C2, where C2 is the class of twice continuously differentiable functions. It follows
then that C2 ⊆ C1.

We can continue to define higher-order levels of differentiability in a recursive man-
ner. Fix k ∈ N, and denote by Ck−1 the class of (k− 1) times continuously differen-
tiable functions. For f ∈ Ck−1, denote by f[k−1](x) the (k− 1)-order derivative of f at
x ∈ X. Then, if f[k−1] is differentiable at x ∈ X, we say that f is k times differentiable
at x, and define the k-order derivative of f at x, denoted f[k](x), to be the derivative
of f[k−1] at x. Then, f is said to be k times differentiable if it is k times differentiable
at all x ∈ X.

And once again, if f is k times differentiable, then f[k] : X→ R, and if f[k] : X→ R

is continuous, we say that f is k times continuously differentiable and that f ∈ Ck,
where Ck is the class of k times continuously differentiable functions. It follows, then,
that Ck ⊆ Ck−1 ⊆ . . . ⊆ C2 ⊆ C1.

Finally, if for all k ∈ N, we have that f ∈ Ck, then we say that f is infinitely
differentiable (or “smooth”) and that f ∈ C∞, where C∞ is the class of infinitely
differentiable functions.

Example 5.2.1. Consider the function f : R→ R, defined by

f(x) =

{
x3

3 , if x > 0;
−x

3

3 , if x < 0.

It is easy to see that f is differentiable and

f ′(x) =

{
x2, if x > 0;
−x2, if x < 0,

which is continuous, so that f ∈ C1. From f ′, we further conclude that f is twice
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differentiable and f ′′(x) = 2|x|, which is continuous, so that f ∈ C2. However, we
know from Example 5.1.2 that f ′′ is not differentiable at 0. Thus, we conclude
that for all k > 3 it is true that f /∈ Ck, or thatf ∈ C2 \C3.

Exercise 5.2.1 (Polynomials). A polynomial of degree n, defined on a domain
X, is a function P : X → R, defined by P(x) =

∑n
j=0 ajx

j, where for each j ∈
{0, 1, 2, . . . ,n}, aj ∈ R, and an 6= 0. Show that any polynomial is of class C∞.
(Hint: Probably the easiest way to do this is by mathematical induction on the
order of the polynomial.)

5.2.2 Derivatives and limits

A very useful result is the following theorem, whose proof we will not give here.

Theorem 5.2.2 (L’Hopital’s Rule). Suppose that f : (a,b) → R and g : (a,b) →
R \ {0}, where −∞ 6 a < b 6 ∞, are differentiable. Let x̄ ∈ [a,b], suppose that
limx→x̄ f ′(x)/g ′(x) = `, for ` ∈ R∪ {−∞,∞}. If limx→x̄ f(x) = 0 and limx→x̄ g(x) =
0, then limx→x̄(f/g)(x) = `.

5.3 Functions on RK

5.3.1 Partial differentiability

We now consider a general, higher-dimensional set X ⊆ RK, open. Suppose that x ∈ X
and fix k ∈ {1, . . . ,K}. It is easy to see that the set

∆ = {δ ∈ R | (x1, . . . , xk−1, xk + δ, xk+1, . . . , xK) ∈ X}

is an open subset of R, and that the function ϕ : ∆→ R, defined by

ϕ(δ) = f(x1, . . . , xk−1, xk + δ, xk+1, . . . , xK)

is well defined. So, we can directly apply all the ideas of the previous section of this
chapter to function ϕ and study the differentiability of function f when, starting from
the point x, we change the k-th argument of the function, while maintaining the other
arguments fixed at (x1, . . . , xk−1, xk+1, . . . , xK). When ϕ is differentiable at zero, we
say that f is partially differentiable with respect to xk at x, and say that the partial
derivative of f with respect to xk at x,

∂f

∂xk
(x) = ϕ ′(0).

When f is partially differentiable with respect to xk at every x ∈ X, we say that f
is partially differentiable with respect to xk. When f is partially differentiable with
respect to xk for every k ∈ {1, . . . ,K}, we say that f is partially differentiable.

Notice that each
∂f

∂xk
(x)

depends on x and not just on xk (obviously, exceptions exist). Importantly, we can
study continuity of these functions and talk of continuous partial differentiability, and
we can also study differentiability of the functions and introduce higher-order partial
differentiability. For example, if the function ∂f/∂xk is differentiable with respect to
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xj at x, then we say that the second derivative of f with respect to xj and xk is

∂2f

∂xj∂xk
(x) =

∂( ∂f∂xk )

∂xj
(x).

When possible, we define the Hessian of f at x as the double-array (K×K matrix)

Hf(x) =


∂2f

∂x1∂x1
(x) · · · ∂2f

∂x1∂xK
(x)

...
. . .

...
∂2f

∂xK∂x1
(x) · · · ∂2f

∂xK∂x1
(x)

 .

A crucial result in calculus, whose proof we will omit, is the following theorem.

Theorem 5.3.1 (Young’s Theorem). If f is twice partially differentiable and all its
second partial derivatives are continuous, then Hf(x) is symmetric.

5.3.2 Differentiability

The concept of partial differentiability is important (and straightforward) but, at least
in principle, limited: it only considers perturbations in the “canonical” directions: one
keeps all but one of the arguments fixed. A stronger concept is needed for more general
perturbations, which we can do by analogy to Theorem 5.1.1.

Definition 5.3.1. A function f : X→ R is differentiable, and has gradient Df(x) = ∆,
at x ∈ X if there are a number ε > 0 and a function ϕ : Bε(0)→ R such that

lim
h→0

ϕ(h)

‖h‖
= 0

and that f(x+ h) = f(x) +∆h+ϕ(h) for all h ∈ Bε(0).

For reasons that will later be obvious, the gradient of a function point x is the
direction in which the function increases most rapidly, when perturbed infinitesimally
in its domain. As before, we can study continuity of Df as a function of f and talk of
continuous differentiability.

The definition is not easy to verify, but the following result bridges the gap between
differentiability and the more operational concept of partial differentiability

Theorem 5.3.2. If f is continuously partially differentiable at x, then it is differ-
entiable at x, and

Df(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xK
(x)

)
.

If, on the other hand, f is continuously differentiable at x, then it is continuously
partially differentiable at x, and(

∂f

∂x1
(x), . . . ,

∂f

∂xK
(x)

)
= Df(x).

Higher-order differentiability is also possible. If f : X→ R is differentiable at x and
there exist ε > 0 and ϕ : Bε(0)→ R such that

lim
h→0

‖h‖−2ϕ(h) = 0
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and f(x+h) = f(x) +Df(x)h+ 1
2h
>∆h+ϕ(h), for all h ∈ Bε(0), for some real-valued

K× K matrix ∆, then we say that f is twice differentiable at x and D2f(x) = ∆. It
follows from the previous theorem that if f is twice continuously partially differentiable
at x, then it is twice differentiable at x, and D2f(x) = Hf(x), whereas, on the other
hand, if f is twice continuously differentiable at x, then it is twice continuously partially
differentiable at x, and Hf(x) = Df(x).

5.4 Taylor Approximations

For simplicity of exposition, throughout this section, we maintain fixed an
open set X ⊆ R.

5.4.1 Approximations by polynomials

Suppose that we have a function f : X→ R, f ∈ Cm, and that 0 ∈ X. Suppose also that
for some integer n 6 m, we want to construct an n-degree polynomial, Pn : X → R,
such that the values of f and its first n derivatives evaluated at 0 are the same as the
values of Pn and its first n derivatives at that same point.

We know that for all (aj)nj=0, a polynomial has the form

Pn(x) = a0 + a1x+ a2x
2 + . . .+ anxn,

and we know that any Pn ∈ C∞. Also, since7 7 In what follows, we are going to use
an extensive notation. If you want to
keep notation short, although compli-
cated, notice that for each k 6 n,

P
[k]
n (x) =

n∑
j=k

j!
(j−k)!

ajx
j−k.

P ′n(x) = a1 + 2a2x+ . . .+nanxn−1,

P ′′n(x) = 2a2 + (3× 2)a3x+ . . .+n(n− 1)anxn−2,

P ′′′n (x) = (3× 2)a3 + (4× 3× 2)a4x+ . . .+n(n− 1)(n− 2)anxn−3,
...

P
[n]
n (x) = n(n− 1)(n− 2) . . . (2)(1)an.

Immediately, Pn(0) = a0, P ′n(0) = a1, P ′′n(0) = 2a2, P ′′′n (0) = (3× 2)a3 = 3!a3, and
so on, up to

P
[n]
n (0) = n(n− 1)(n− 2) . . . (2)(1)an = n!an.

Now, since what we want is to find (aj)
n
j=0 such that Pn(0) = f(0), P ′n(0) = f ′(0),

P ′′n(0) = f ′′(0), and so on, until, P[n]n (0) = f[n](0), it is immediate that the (only) array
(aj)

n
j=0 that satisfies such equalities is given by a0 = f(0) and an = 1

k! f
[k](0), for each

k = 1, . . . ,n. Put another way, our desired polynomial is

Pn(x) = f(0) + f ′(0)x+
1
2
f ′′(0)x2 + . . .+

1
n!
f[n](0)xn.

Since the restrictions we imposed are such that f and Pn are very close to each other
and have the same derivatives when x is close to 0, we say that Pn is an n-th-order
approximation to f about 0. Usually, this fact is expressed by saying that

f(x) ≈ f(0) + f ′(0)x+ 1
2
f ′′(0)x2 + . . .+

1
n!
f[n](0)xn.

One important remark is in order. Notice first that for all array {aj}
n
j=0, all x ∈ X
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and all k > n one necessarily has that

P
[k]
n (x) = 0.

This implies that we should not try to equate more than the first n derivatives of the
polynomial to the ones of the function. However, it is true that the higher the degree
of the polynomial (subject to the differentiability of f), the better the approximation
to the function. We will later come back to this point, but the following example may
be illustrative:

Example 5.4.1. Let f : [−0.5, 0.5]→ R be defined by

f(x) =
1

(1+ x)2
.

One can check that f ∈ C∞. Also, we have that

f ′(x) =
−2

(1+ x)3

and
f ′′(x) =

6
(1+ x)4

.

In particular, f(0) = 1, f ′(0) = −2 and f ′′(0) = 6. Thus, we have that P1(x) = 1−2x
and P2(x) = 1 − 2x + 3x2. The graph of function f and these two polynomial
approximations is Figure 5.1. Notice how well the second-order polynomial (green
curve) approximates the function (blue curve). It certainly does better than the
first-order polynomial (red line)!

x

y Figure 5.1: Accuracy of Taylor approx-
imations

Exercise 5.4.1. Develop first- and second-order polynomial approximations to
f : [−1, 1]→ R, defined by f(x) = ex.

Exercise 5.4.2. Argue that e =
∑∞
n=0(1/n!).

5.4.2 Taylor approximations

The method that we used in the previous section is limited in that it requires that
0 ∈ X, and in that we can only approximate the function about 0. The natural way to
generalize this particular case is the use of Taylor polynomials.

Let x̄ ∈ R. An n-degree polynomial about x̄ is a function Pn,x̄ : R→ R of the form

Pn,x̄(x) = a0 + a1(x− x̄) + a2(x− x̄)
2 + . . .+ an(x− x̄)n,
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where aj ∈ R, for j = 0, . . . ,n, and an 6= 0. It is easy to show that every such function
is of class C∞.

Now, suppose that we have a function f : X → R of class Cm, and that for some
n 6 m and some x̄ ∈ X, we want to construct an n-degree Taylor polynomial such that
the values of f and its first n derivatives evaluated at x̄ are the same as the values of
Pn,x̄ and its first n derivatives at that same point. Then, we only have to repeat the
procedure we already used: we have that

P ′n,x̄(x) = a1 + 2a2(x− x̄) + . . .+nan(x− x̄)n−1,

P ′′n,x̄(x) = 2a2 + (3× 2)a3(x− x̄) + . . .+n(n− 1)an(x− x̄)n−2,

P ′′′n,x̄(x) = (3× 2)a3 + (4× 3× 2)a4(x− x̄) + . . .+n(n− 1)(n− 2)an(x− x̄)n−3,

...

P
[n]
n,x̄(x) = n(n− 1)(n− 2) . . . (2)(1)an,

so that Pn,x̄(x̄) = a0, P ′n,x̄(x̄) = a1, P
′′
n,x̄(x̄) = 2a2, P ′′′n,x̄(x̄) = 3!a3, and so on, up to

P
[n]
n,x̄(x̄) = n!an;

and, since what we want is to find {aj}
n
j=0 such that Pn,x̄(x̄) = f(x̄), P ′n,x̄(x̄) = f ′(x̄),

P ′′n,x̄(x̄) = f
′′(x̄), and so on, until

P
[n]
n,x̄(x̄) = f

[n](x̄),

it is easy to see that the (only) sequence (aj)
n
j=0 that satisfies such equalities is to let

a0 = f(x̄) while

an =
1
k!
f[k](x̄)

for all k = 1, . . . ,n.
When we use these particular values of (aj)nj=0 we obtain the n-th-degree Taylor

polynomial approximation to f about x̄. We denote this function by Tf,n,x̄ : X → R,
and define it as

Tf,n,x̄(x) = f(x̄) + f ′(x̄)(x− x̄) +
1
2
f ′′(x̄)(x− x̄)2 + . . .+

1
n!
f[n](x̄)(x− x̄)n

= f(x̄) +

n∑
j=1

1
j!
f[j](x̄)(x− x̄)j.

Again, in order to highlight that this is an approximation to f, it is usually written
that

f(x) ≈ f(x̄) + f ′(x̄)(x− x̄) + 1
2
f ′′(x̄)(x− x̄)2 + . . .+

1
n!
f[n](x̄)(x− x̄)n.

Exercise 5.4.3. Argue that

ex =

∞∑
n=0

(1/n!)xn.

Exercise 5.4.4. Develop first- and second-order Taylor approximations around 1
to f : R++ → R, defined by f(x) = ln(x).
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5.4.3 The remainder

In this section, we maintain the assumption that we have f : X→ R, f ∈ Cm, and that
for some n ∈ N, n 6 m, and some x̄ ∈ X, Tf,n,x̄ : X → R is the nth-degree Taylor
approximation to f about x̄.

Definition 5.4.1. We define the remainder of the n-degree Taylor polynomial
approximation to f about x̄, denoted Rf,n,x̄, by the function Rf,n,x̄ : X→ R, where,
for all x ∈ X,

Rf,n,x̄(x) = f(x) − Tf,n,x̄(x)

The remainder measures (locally) the error that we are making when approximating
the function by the nth-degree Taylor polynomial. It follows then, by definition, that

f(x) = Tf,n,x̄(x) + Rf,n,x̄(x)

and that
Rf,n,x̄(x̄) = 0

but these properties are of no particular interest, since they are imposed by construc-
tion.

5.4.4 Mean value and Taylor’s theorems

Before we introduce the most important property of the remainder, the following result
is interesting:

Theorem 5.4.1 (The Mean Value Theorem). Suppose that we have f : X → R,
fdifferentiable. If x, x̄ ∈ X are such that [x, x̄] ⊆ X, [x, x̄] 6= ∅, then ∃x∗ ∈ [x, x̄] such
that

f(x) = f(x̄) + f ′(x∗)(x− x̄)

Similarly, if x, x̄ ∈ X are such that [x̄, x] ⊆ X, [x̄, x] 6= ∅, then ∃x∗ ∈ [x̄, x] such that

f(x) = f(x̄) + f ′(x∗)(x− x̄)

Notice the similarity between the expression resulting from the mean value theorem
and a first-degree polynomial approximation about x̄. The only difference is that the
derivative is not (necessarily) evaluated at x̄, but (maybe) at some other point in the
interval between x̄ and x. The importance of the result is that, with just that little
change, our result is no longer an approximation: it is exact!

The mean value theorem allows to prove the following result. Recall that we main-
tain the assumptions introduced at the beginning of this section:

Theorem 5.4.2 (Taylor’s Theorem). Suppose that f is (n+ 1) times differentiable
(i.e. f[n+1] : X → R exists). If x, x̄ ∈ X are such that [x, x̄] ⊆ X, [x, x̄] 6= ∅, then
∃x∗ ∈ [x, x̄] :

Rf,n,x̄(x) =
1

(n+ 1)!
f[n+1](x∗)(x− x̄)n+1

Similarly, if x, x̄ ∈ X are such that [x̄, x] ⊆ X, [x̄, x] 6= ∅, then ∃x∗ ∈ [x̄, x] :

Rf,n,x̄(x) =
1

(n+ 1)!
f[n+1](x∗)(x− x̄)n+1
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Two remarks are in order. Notice first that n < m suffices as hypothesis for the the-
orem. But it is also important to notice that we do not require f[n+1] to be continuous,
only to exist.

Second, notice again how similar this expression for the remainder is to each one of
the terms of the Taylor polynomial. Again, the only difference is that the derivative in
the remainder is computed at some point in the interval between x̄ and x (an interval
that must, obviously, be part of the domain), rather than at x̄. The importance comes
then from the fact that, if we have f : X → R, f ∈ Cn, and f[n+1] exists, then, for
some in the x∗ interval between x̄ and x, the expression

f(x) = f(x̄) + f ′(x̄)(x− x̄) +
1
2
f ′′(x̄)(x− x̄)2 + . . .

+
1
n!
f[n](x̄)(x− x̄)n +

1
(n+ 1)!

f[n+1](x∗)(x− x̄)n+1

is not an approximation. It is exact.
Unfortunately, we do not (yet) have the necessary elements to prove the mean value

theorem (and, therefore, Taylor’s theorem). However, we should be able to convince
ourselves that the mean value theorem is intuitively clear.

5.4.5 Local accuracy of Taylor approximations

Although the mean value and Taylor’s theorems are very important, in many cases one
doesn’t have the possibility to find which particular point in the interval between x̄
and x will make our expressions exact. In those cases, we must stick to our nth-order
approximation. In this section, we claim that Taylor approximations are very good
whenever x and x̄ are close to each other, and that the higher n the better (locally) is
the approximation. The exact sense in which this is true is that we will argue that as
x→ x̄, we have that Rf,n,x̄(x)→ 0 faster than (x− x̄)n. In other words, we claim that

lim
x→x̄

(
Rf,n,x̄(x)

(x− x̄)n

)
= 0

Notice that if n < m, then, by Taylor’s theorem, the result is straightforward.
However, since we didn’t prove the theorem, you may still be doubting about the
result. We now offer a heuristic argument, for n = 1.

In such a case, it is clear that

Rf,1,x̄(x) = f(x) − f(x̄) − f
′(x̄)(x− x̄)

so that for all x 6= x̄,
Rf,1,x̄(x)

(x− x̄)
=
f(x) − f(x̄)

(x− x̄)
− f ′(x̄)

and, by definition,

lim
x→x̄

Rf,1,x̄(x)

(x− x̄)
= lim

x→x̄

(
f(x) − f(x̄)

(x− x̄)
− f ′(x̄)

)
= f ′(x̄) − f ′(x̄)

= 0

meaning that Rf,1,x̄(x) goes to 0 faster than x− x̄.
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Exercise 5.4.5 (L’Hopital’s rule is really useful, I). Remember L’Hopital’s rule? If
so, you can further convince yourself of our claim for n > 2. For example, if
n = 2, notice that

Rf,2,x̄(x) = Rf,1,x̄(x) −
1
2
f ′′(x̄)(x− x̄)2

Now, you can use L’Hopital’s rule (after showing that it applies, of course,) to
argue that

lim
x→x̄

Rf,1,x̄(x)

(x− x̄)2
=

1
2
f ′′(x̄)

from where it follows that

lim
x→x̄

Rf,2,x̄(x)

(x− x̄)2
= 0

Moreover, if you do this, you can prove the general result by mathematical induc-
tion.





6
Linear Algebra

We now review, very briefly, the theory of linear spaces and linear operations on
Real spaces. For the purposes of this chapter, fix numbers K, J,L,N ∈N.

6.1 Matrices

It is often useful to generalize the idea of vector to richer arrays of numbers. A
K× J matrix is an array of J ∈ N vectors in RK, each of which is taken as a column.
If K = J the matrix is said to be square.

Example 6.1.1. The identity matrix of size K, denoted I, is I = (e1, e2, . . . , eK).

Given a K× J matrix

A =


a1,1 a1,2 · · · a1,J
a2,1 a2,2 · · · a2,J
...

...
. . .

...
aK,1 aK,2 · · · aK,J

 ,

the transpose of A, denoted by A>, is the J×K matrix

A> =


a1,1 a2,1 · · · aK,1
a1,2 a2,2 · · · aK,2
...

...
. . .

...
a1,J a2,J · · · aK,J

 .

Exercise 6.1.1. Prove the following: if A is a K× J matrix and B is a J×L matrix,
then (AB)> = B>A>.

A matrix A is said to be symmetric if A> = A, which obviously requires it to be
square.

6.2 Linear Functions

A very simple, yet extremely useful kind of functions is defined by restricting the
images they give to sums of vectors and to products of vectors and scalars. A function
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f : RK → RJ, where J,K ∈N, is said to be linear if:

1. for all x, x ′ ∈ RK, f(x+ x ′) = f(x) + f(x ′);

2. for all x ∈ RK and for all ϑ ∈ R, f(ϑx) = ϑf(x).

Theorem 6.2.1. A function f : RK → RJ is linear if, and only if, there exists a
J×K matrix A such that for all x ∈ RK, f(x) = Ax.

Proof. Sufficiency is obvious. For necessity, consider the following (J × K) matrix
A = (f(e1), f(e2), · · · , f(eK)) .

Exercise 6.2.1. Show that if f : RK → RJ and g : RJ → RL are linear, then g ◦ f
is linear.

Given a finite sequence (xn)
N
n=1 in RK, we define the span of (xn)

N
n=1, denoted

Sp(xn)Nn=1, as

Sp(xn)Nn=1 =

{
x ∈ RK | ∃(ϑn)Nn=1 ∈ R :

N∑
n=1

ϑnxn = x

}
.

That is, the span of a sequence of vectors is the set of all its possible linear combinations.
Let f : RK → RJ be linear, and fix the J× K matrix A such that f(x) = Ax for all

x ∈ RK. The range of f is simply the span of A. The set

ker(A) = {x ∈ RK | Ax = 0}

is known as the kernel, or nullspace, of A.

6.3 Determinants

Given a 2 × 2 matrix A, its is the number determinant

det(A) = a1,1a2,2 − a2,1a1,2 .

The absolute value of this number is the are of the parallelogram defined by the origin,
the two rows of the matrix and their sum.

For any K × K matrix

A =


a1,1 a1,2 · · · a1,K
a2,1 a2,2 · · · a2,K
...

...
. . .

...
aK,1 aK,2 · · · aK,K


denote by A¬(j,`) the (K − 1) × (K − 1) matrix resulting from deleting the jth row
and the `th column. The determinant of A, denoted by det(A), is recursively defined
by1 1 The latter definition is known as co-

factor expansion along the first row.
det(A) =

K∑
k=1

(−1)1+ka1,k det(A¬(1,k))

It is an important fact that the determinant of a matrix can be found using any one of
the rows or columns for the cofactor expansion, which implies that det(A) = det(A>).
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Exercise 6.3.1. Prove the following results:

1. det(I) = 1

2. For any pair of K×K matrices A and B, det(AB) = det(A)det(B).

Important and easily verifiable facts about determinants are the following: let
(ak)

K
k=1 be a finite sequence in RK,

1. for all x ∈ RK

det (a1 + x,a2, · · · ,aK) = det (a1,a2, · · · ,aK) + det (x,a2, · · · ,aK) ;

2. for all ϑ ∈ R,
det (ϑa1,a2, · · · ,aK) = ϑdet (a1,a2, · · · ,aK) ;

3. det (a1 + a2,a2, · · · ,aK) = det (a1,a2, · · · ,aK); and

4. det (a2,a1, · · · ,aK) = −det (a1,a2, · · · ,aK).

6.4 Linear Independence, Dimension and Rank

The canonical vectors in RK are the sequence (ek)
K
k=1 in RK, where, for all

k = 1, . . . ,K, ek,` = 1 if k = `, and ek,` = 0 otherwise. Evidently, Sp(ek)Kk=1 = RK

and
K∑
k=1

ϑkek = (0)Kk=1 ⇒ (ϑk)
K
k=1 = (0)Kk=1.

These two properties are important, as they imply that the vectors suffice to “generate”
the whole of RK.

In general, a finite sequence (xn)
N
n=1 in RK is said to be linearly independent if

N∑
n=1

ϑnxn = (0)Kk=1 ⇒ (ϑn)
N
n=1 = (0)Nn=1.

Exercise 6.4.1. Prove the following: (xn)
N
n=1 is linearly dependent if, and only

if, for some n∗ ∈ {1, . . . ,N} and some (ϑn)n∈{1,...,N}\{n∗},

xn∗ =
∑
n 6=n∗

ϑnxn

A set L ⊆ RK is said to be a linear subspace of RK, denoted by L v RK, if: (i) it
is closed under addition: for all x,y ∈ L, x+ y ∈ L; and (ii) it is closed under scalar
multiplication: for all x ∈ L and all ϑ ∈ R, we have that ϑx ∈ L.

Exercise 6.4.2. Prove the following: for every (xn)
N
n=1 in RK, Sp(xn)Nn=1 v RK.

Any sequence (xn)
K
n=1 in RK such that Sp(xn)Kn=1 = RK is called a basis for RK.

In particular, (ek)
K
k=1 is called the canonical basis for RK. In general, sequence

(xn)
N
n=1 is a basis for a linear subspace L of RK if it is linearly independent and

Sp(xn)Nn=1 = L.
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Any two bases of a linear subspace L have the same number of vectors. This common
number is known as the dimension of L, denoted dim(L). The dimension of RK is K,
while the dimension of any linear subspace of RK is at most K.

Using our previous notation, given a J×K matrix A = (a1,a2, · · · ,aJ), the column
span of A, denoted by Sp(A), is Sp(aj)

J
j=1. The rank of A, denoted by rank(A), is the

dimension of Sp(A). The nullity of A, denoted by nul(A), is the dimension of ker(A).

Theorem 6.4.1 (The Fundamental Theorem of Linear Algebra, I). Given a J × K
matrix A,

1. rank(A) + nul(A) = K;

2. {x ∈ RK | ∀y ∈ Sp(A>), x · y = 0} = ker(A).

Proof. For the first part, let {u1, . . . ,uL} be a basis for ker(A),2 and let {v1, . . . , vK−L} 2 So L = nul(A).

be such that
{u1, . . . ,uL, v1, . . . , vK−L}

is a basis for RK. It suffices for us to show that {Av1, . . . ,AvK−L} is a basis for Sp(A).
To see this, let x ∈ RK and find (unique) scalars such that

L∑
`=1

α`u` +

K−L∑
j=1

βjvj = x.

Then,

Ax =

L∑
`=1

α`Au` +

K−L∑
j=1

βjAvj =

K−L∑
j=1

βjAvj.

Since x was arbitrary, it follows that Sp{Av1, . . . ,AvK−L} = Sp(A). To complete
the argument, it remains to show that {Av1, . . . ,AvK−L} is linearly independent. For
this, suppose that

∑K−L
j=1 γjAvj = 0. Then, A

∑K−L
j=1 γjvj = 0, which means that∑K−L

j=1 γjvj ∈ ker(A). We can then find scalars such that

K−L∑
j=1

γjvj =

L∑
`=1

δ`u`,

or
K−L∑
j=1

γjvj +

L∑
`=1

(−δ`)u` = 0.

Since {u1, . . . ,uL, v1, . . . , vK−L} is a basis for RK, it follows that

γ1 = . . . = γL = δ1 = . . . = δK−L = 0,

as needed.
The second part is left as an exercise.

Note that, necessarily, rank(A) 6 min(K, J). Intuitively, the rank is the largest
number of linearly independent rows or columns of the matrix.
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6.5 Inverse Matrix

A K × K matrix A is said to be invertible if there exists another K × K matrix B
such that BA = AB = I. In this case, matrix B is said to be the inverse3 of A and is 3 Notice that we are saying the, and

not an inverse. The reason is that a
matrix can have at most one inverse:
Suppose that

BA =AB = I =AC = CA.

Then,
(B−C)A = 0,

so
(B−C)AB = 0,

and
(B−C)I = 0.

Obviously, this means that B = C. It
follows that if B and C are inverses of
A, then B = C.

denoted by A−1.

Exercise 6.5.1. Prove that if A is invertible, then so is A−1, and (A−1)−1 = A.

Exercise 6.5.2. Prove that if A and B are invertible K× K matrices, then AB is
invertible and (AB)−1 = B−1A−1.

The second part of the Fundamental Theorem of Linear Algebra says the following:

Theorem 6.5.1 (The Fundamental Theorem of Linear Algebra, II). Given a K× K
matrix A, the following statements are equivalent:

1. A is invertible.

2. det(A) 6= 0.

3. rank(A) = K.

4. the columns of A, (ak)Kk=1, are linearly independent.

A quick way to see that the first two claims of this theorem are equivalent is to
verify, by direct computation, that given invertible A,

A−1 =
1

det(A)
adj(A),

where

adj(A) =


ā1,1 ā1,2 · · · ā1,K
ā2,1 ā2,2 · · · ā2,K
...

...
. . .

...
āK,1 āK,2 · · · āK,K


>

and
āj,l = [(−1)j+l det(A¬(j,l))]

The number āj,` is known as the (j, `) co-factor of A. Matrix adj(A) is called the
adjugate matrix of A, and its transpose is the co-factor matrix.

An important implication of the theorem is that a linear function f : RJ → RK is
bijective if, and only if, the matrix A that generates it is invertible. In such case, the
inverse function is f−1(y) = A−1y, which is linear too.

6.6 Eigenvalues and Eigenvectors

Let a K × K matrix A be fixed. An eigenvector of A is x ∈ RK \ {0} such that
Ax = λx for some λ ∈ R. The λ associated to an eigenvector is called its eigenvalue.4

4 Less common names are characteris-
tic vector and characteristic value. In
Latin languages, they are also called
“auto” vector and “auto” value, with
the same semantic root as the German
“eigen”. The reason why the German
term remains used in English, I imag-
ine, is that Euler was probably the first
person to discover these objects. La-
grange discovered them independently,
but a few years later.

Intuitively, an eigenvector is such that the linear transformation simply re-scales it by
its associated eigenvalue. This implies that eigenvectors can only be determined up to
scalar multiplication.
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The system that defines them eigenvectors and eigenvalues of matrix A is

(A− λI)x = 0,

and is known as the matrix’s characteristic equation. We are interested in solutions
x 6= 0, so we can find the eigenvalues by solving the equation

det(A− λI) = 0,

which is known as the matrix’s characteristic function. Notice that it is a Kth-degree
polynomial, so it has at most K real roots.5 5 And, in fact, has K roots, whether

real or imaginary.Three key results are the following: denote by λ1, . . . , λK the eigenvalues of A; then,

1.
∑K
k=1 λk =

∑K
k=1 ak,k;

6 6 This number
∑K
k=1 ak,k is known as

the trace of A and is denoted Tr(A).
2.
∏K
k=1 λk = det(A); and

3. the number of non-zero eigenvalues of A is rank(A).

6.7 Quadratic Forms

Let a K × K matrix A be fixed, once again. The quadratic form associated to A
is the function fA : RK → R; fA(x) = x>Ax.

Definition 6.7.1. Matrix A is:

1. negative definite if for all x ∈ RK \ {0}, fA(x) < 0;

2. negative semidefinite if for all x ∈ RK, fA(x) 6 0

3. positive definite if for all x ∈ RK \ {0}, fA(x) > 0; and

4. negative semidefinite if for all x ∈ RK, fA(x) > 0.

Exercise 6.7.1. Show that I is positive definite and that matrix A is positive
(semi-)definite if, and only if, −A is negative (semi-)definite.

Exercise 6.7.2. Show that A is negative semidefinite if, and only if, fA satisfies
the following property: for all x, x ′ ∈ RK, for all ϑ ∈ [0, 1],

fA(ϑx + (1 − ϑ)x ′) > ϑfA(x) + (1 − ϑ)fA(x ′).

A very useful result is the following: A is positive definite if all its eigenvalues are
(strictly) positive, and negative definite if all its eigenvalues are (strictly) negative;
moreover, it is positive semidefinite, but not definite, if all its eigenvalues are non-
negative and at least one is zero, and negative semidefinite, but not definite, if all its
eigenvalues are nonpositive and at least one is zero.

The last observations and the second result about eigenvalues make the following
theorems very intuitive. Given a K× K matrix A, define its principal minor of order
k = 1, . . . , K as the number

det


a1,1 a1,2 · · · a1,k
a2,1 a2,2 · · · a2,k
...

...
. . .

...
ak,1 ak,2 · · · ak,k


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that is, the determinant of the sub-matrix resulting from keeping the first k rows and
columns, dropping the rest. Also, the determinant of any sub matrix resulting from
keeping k rows and the corresponding columns, and dropping the rest of the matrix,
is called a minor of A of order k.

Theorem 6.7.1. A is negative definite if, and only if, each principal minor of
order k of A has sign (−1)k. It is positive definite if, and only if, all principal
minors are positive.

Theorem 6.7.2. A is negative semidefinite if, and only if, all minors of order k of
A have sign (−1)k or 0. It is positive semidefinite if, and only if, all minors are
nonnegative.

6.8 Linear Systems of Inequalities

A very important result in linear analysis, known as The Theorem of the
Alternative or the Minkowski–Farkas Lemma, studies the existence of solutions to
linear systems. It says:7 7 Note that ϑ is taken as a column

vector, while Π is a row vector.
Theorem 6.8.1 (Minkowski–Farkas). Let A be a given K× J matrix. One, and only
one, of the following two statements is true:

1. there exists column vector x ∈ RJ such that Ax > 0 (resp. Ax� 0); or,

2. there exists a row vector y ∈ RK++ (resp. y ∈ RK+ \ {0}) such that yA = 0.

This theorem is proved in an exercise of the following chapter. The next section
offers an important application of it in economics.

6.9 Application: Testing Consumer Theory

The standard for what is to be considered scientific knowledge has been a promi-
nent topic of debate in epistemology. Karl Popper argued that scientists should actively
try to prove their theories wrong, rather than merely attempt to verify them through
inductive reasoning. The Popperian postulate thus states that a scientific discovery
ought to distinguish the theory from its empirical implications and that the empirical
implications should be contrasted to reality, in order for the theory to be corroborated
(however, not verified) or refuted. If a theory fails a test, and there exists no reasonable
excuse that can itself be tested, then the theory should be abandoned.

This “empiricist” position, often referred to as “falsificationism,” had been previously
exposed by Poincaré who, in 1908, wrote that

[W]hen a theory has been established, we have first to look for cases in which the rule
stands the best chance of being found at fault.

This principle was introduced to economics by Paul Samuelson, for whom “meaningful
theorems” are hypotheses about “empirical data which could conceivably be refuted.8 8 P. Samuelson (1947, Foundations of

Economic Analysis, p.4).It seems desirable to obtain testable implications from the equilibrium concepts in
economics, even if one considers the views of Popper to be an extreme. We now
consider this problem for the case of a consumer in the context of Section 4.5.
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Suppose that we have observed a data set D = {(xt,pt,mt)}Tt=1, with T ∈N, where
for all t, pt ∈ RL++, mt ∈ R+, xt ∈ B(pt,mt), and pt · xt = mt.

We shall say that (utility) function u : RL+ → R rationalizes data set D, if

argmaxx∈B(pt,mt)u(x) = {xt}

for all t. We shall also say thatD satisfies the Strong Axiom of Reveaked Preferences,
SARP, if for any finite sequence (xk,pk,mk)Kk=1 definied in D we have that if pk ·
xk+1 6 mk, for all k = 1, . . . ,K− 1, and x1 6= xK, then pK · x1 > m1.

Theorem 6.9.1. Let D = {(xt,pt,mt)}Tt=1 be a data set such that xt 6= xt ′ whenever
t 6= t ′.9 The next statements are equivalent: 9 This assumption is made only for

simplicity of the argument that follows.

1. There exists a function u : RL+ → R that rationalizes D.

2. D satisfies SARP.

3. There exist numbers (λt,µt) ∈ R++ ×R, for each t ∈ {1, . . . , T }, such that,

µt < µt ′ + λt ′pt ′ · (xt − xt ′),

whenever t 6= t ′.

4. There exist a continuous, strictly concave, strictly monotonic function u :

RL+ → R that rationalizes D.

Proof: Note that it suffices for us to show that 1⇒ 2⇒ 3⇒ 4⇒ 1.

Proof that 1 ⇒ 2: Let (xk,pk,mk)Kk=1 be a finite sequence defined in D, such that
the following conditions are satisfied:

(i) for each k = 1, . . . ,K− 1, pk · xk+1 6 mk;

(ii) x1 6= xK; and

(iii) pK · x1 6 m1.

Let function u : RL+ → R rationalize D. Condition (i) implies that u(xk+1) 6 u(xk)

for all k = 1, . . . ,K− 1. It immediately follows that u(xK) 6 u(x1). Since, by (iii),
pK · x1 6 m1 and

xK ∈ argmaxx∈B(pK,mK)u(x),

we further have that
x1 ∈ argmaxx∈B(pK,mK)u(x).

But, then, (ii) contradicts the fact that

argmaxx∈B(pK,mK)u(x) = {xK}.
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Proof that 2⇒ 3: Define the T(T − 1)× 2T matrix

W =



1 −1 0 . . . 0 p1 · (x2 − x1) 0 . . . 0
1 0 −1 . . . 0 p1 · (x3 − x1) 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

1 0 0 . . . −1 p1 · (xT − x1) 0 . . . 0
−1 1 0 . . . 0 0 p2 · (x1 − x2) . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . 1 0 0 . . . pT · (xT−1 − xT )

0 0 0 . . . 0 1 0 . . . 0
0 0 0 . . . 0 0 1 . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . 0 0 0 . . . 1



,

and suppose that there is no vector

ϑ = (µ1,µ2,µ3, . . . ,µT , λ1, λ2, . . . , λT )T

such that Wϑ� 0. Then, by Theorem 6.8.1,10 there exist two arrays of non-negative 10 For simplicity, we rephrase under
the current notation:

Let W be a T(T − 1)× 2T ma-
trix. One, and only one, of
the following statements is
true:

1. there exists ϑ ∈ R2T such
that Wϑ� 0; or,

2. there exists Π ∈ R
T(T−1)
+ ,

Π 6= 0, such that ΠW = 0.

numbers {πt,t ′ | t = 1, . . . , T and t 6= t ′} and {γt | t = 1, . . . , T }, at least one of which
is strictly positive, such that:

(i) For all t,
∑
t ′ 6=t πt,t ′ =

∑
t ′ 6=t πt ′,t; and

(ii) For all t,
∑
t ′ 6=t πt,t ′pt · (xt ′ − xt) + γt = 0.

If πt,t ′ = 0 for all t and t ′, condition (ii) implies that γt = 0 for all t, which is
impossible. It follows that for some t1, there exists t2 6= t1 for which πt1,t2 > 0.
Since γt1 > 0, condition (ii) implies that we can fix t2 such that πt1,t2 > 0 and
pt1 · (xt2 − xt1) 6 0.

Now, by condition (i), there exists t3 6= t2 such that πt2,t3 > 0. As before, γt2 > 0
and condition (ii) imply that we can fix t3 such that πt2,t3 > 0 and pt2 · (xt3 −xt2) 6 0.
If t3 = t1, we have a contradiction of WARP, so it must be that t3 6= t1.

Using condition (i) again, as before there must exist t4 6= t3 such that πt3,t4 > 0
and pt3 · (xt4 − xt3) 6 0. If t3 = t1 or t3 = t2, we again have a contradiction of WARP.
To avoid this contradiction it must be that t4 6= t1 and t4 6= t2, and we can proceed
as before. But since T ∈ N, after at most T steps the contradiction of WARP cannot
be avoided.

Proof that 3⇒ 4: Define function h : RL → R, by

h(x) =
√
‖x‖2 + 1− 1.

This function is differentiable, strictly concave and satisfies that

(i) h(x) = 0 if, and only if, x = 0;

(ii) h(x) > 0 for all x 6= 0; and

(iii) for all l ∈ {1, . . . ,L}, and all x,

∂h

∂xl
(x) ∈ [0, 1)
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Since T ∈N, there exists ε ∈ R++ such that for all t, t ′,

µt ′ < µt + λtpt · (xt ′ − xt) − εh(xt ′ − xt).

Now, for each t, define function φt : RL → R por

φt(x) = µt + λtpt · (x− xt) − εh(x− xt),

which is strictly concave. Note also that for all l, la cual es estríctamente cóncava.
Además, note que

∂φt

∂xl
(x) = λtpt,l − ε

∂h

∂xl
(x− xt) > λtpt,l − ε,

so one can take ε > 0 small enough that φt is strictly monotonic.11 11 Of course, we can do this since L ∈
N and T ∈N.Now, define the utility function u : RL+ → R by

u(x) = min
t∈{1,...,T}

{φt(x)}.

This function is continuous, strictly concave and strictly monotone,12 so all that re- 12 It is also differentiable, except at T
points. These kinks can be smoothed
using a technique called a convolution,
which is beyond these notes.

mains to show is that
argmaxx∈B(pt,mt)u(x) = {xt},

for all t. By definition of D, xt ∈ B(pt,mt). Also, note that u(xt) > µt, since
otherwise there would be t ′ such that

φt ′(xt) = µt ′ + λt ′pt ′ · (xt − xt ′) − εh(xt − xt ′) < µt,

which would contradict the definition of ε. Also, by definition there exists t ′ for which

u(xt) = φt ′(xt) 6 φt(xt) = µt.

These last two results imply that u(xt) = µt.
Now, suppose that x ∈ RL+ \ {xt} satisties that pt · x 6 mt. Then,

u(x) = min
t ′∈{1,...,T}

{φt ′(x)} 6 φt(x) = µt + λtpt · (x− xt) − εh(x− xt).

Then, as
λtpt · x 6 λtmt = λtpt · xt

we have that λtpt · (x− xt) 6 0. And since εh(x− xt) > 0, moreover u(x) < µt =

u(xt), as needed.

Proof that 4⇒ 1: This is obvious. Q.E.D.



7
Convex Analysis

Throughout this chapter, we maintain the assumption that X ⊆ RK, K ∈ N

and X 6= ∅.

7.1 Convex Sets and Separation

Set X is said to be convex if for all x, y ∈ X and for all ϑ ∈ [0, 1], we have that
ϑx + (1 − ϑ)y ∈ X.

Exercise 7.1.1. Show that X = {x} is convex. Show that for all x ∈ R and for all
ε > 0, Bε(x) is convex. Is N convex? Is ∅ convex? Is R convex? Show that if
X and Y are convex, X ∩ Y is convex. Is X ∪ Y convex in that same case?

A key result in mathematical economics is the following theorem.

Theorem 7.1.1 (The separating hyperplane theorem). If Q,Q ′ ⊆ RA are disjoint
and convex, there exist ϑ ∈ RA \ {0} and k ∈ R such that qϑ 6 k for all q ∈ Q,
and qϑ > k for all q ∈ Q ′.

The reason why this result is called the separating hyperplane theorem is that
ϑ ∈ RA \ {0} and k ∈ R define the set

{q ∈ RA | qϑ = k},

is indeed a plane if A = 3 For general A, this set is known as a hyperplane. Vector
ϑ is called the hyperplane normal vector, since it is orthogonal to any vector of the
form (q− q ′), for q, q ′ in the set. Scalar k determines the position of the hyperplane.
Once the hyperplane is defined, RA is split in two half-spaces, one on each side of the
hyperplane. The theorem says that any two disjoint convex sets can be separated, in
the sense that we can find a hyperplane that leaves each set on a different hyperplane.

For the sake of simplicity, we shall give the proof of a weaker version of the theorem,
based on the following result.

Lemma 7.1.1. If Q ⊆ RA is nonempty, closed and convex, and q̄ ∈ RA \Q, there
exist q∗ ∈ Q, ϑ ∈ RA \ {0} and k ∈ R such that q̄ϑ < k, q∗ϑ = k and qϑ > k for
all q ∈ Q.



70 andrés carvajal – uc davis

We have to defer to the next chapter the proof of this lemma. A simple consequence
of it is the following:

Proof of a weak version of Theorem 7.1.1: For a simple argument, let us prove the
following statement:

If Q,Q ′ ⊆ RA are disjoint, closed and convex, there exists ϑ ∈ RA \ {0} such that
qϑ 6 qϑ for all q ∈ Q and all q ′ ∈ Q ′.

For this, define the set

∆ = Q−Q ′ = {δ ∈ RA | ∃(q,q ′) ∈ Q×Q ′ : q− q ′ = δ}.

This set is nonempty, closed and and convex. Since Q ∩Q ′ = ∅, 0 /∈ ∆. By Lemma
7.1.1, there exist δ∗ ∈ ∆, ϑ ∈ RA \ {0} and κ > 0, such that δ∗ϑ = κ and δϑ > κ for all
δ ∈ ∆. Now, for all q ∈ Q and all q ′ ∈ Q ′, (q− q ′) ∈ ∆, so (q− q ′)ϑ > κ > 0.

A stronger version of the theorem of separation of convex sets is the following:

Theorem 7.1.2. Let Q,Q ′ ⊆ RT be disjoint and convex. If Q is closed and Q ′ is
compact, then there exist ϑ ∈ RT \ {0} and k ∈ R such that for all q ∈ Q, qϑ < k,
and for all q ∈ Q ′, qϑ > k.

Exercise 7.1.2. In this exercise you are going to prove Theorem 6.8.1. First,
define the sets

〈W〉 = {ρ ∈ RT | ∃ϑ ∈ RA : Wϑ = ρ},

which is known as the column span of W; and the (T − 1)-dimensional simplex,

∆ = {ρ ∈ RT+ | ρ · (1, . . . , 1) = 1}.

The following steps will give you the desired proof.

1. Argue that if 〈W〉 ∩∆ = ∅, then there exists some Π ∈ RT \ {0} such that for
all ρ ∈ 〈W〉 and all ρ ′ ∈ ∆, Πρ < Πρ ′.

2. Fix the Π ∈ RT found in the previous step. Noting that 0 ∈ 〈W〉, argue that
for any ρ ′ ∈ ∆, 0 < Πρ ′.

3. Argue that the previous result implies that Π� 0.

4. Noting that (1/T , . . . , 1/T) ∈ ∆, argue that, for all ϑ ∈ RA,

(ΠW)ϑ <
1
T

T∑
t=1

Πt.

5. Argue that the previous result implies that ΠW = 0.

6. With respect to the two statements in the Theorem of the Alternative, argue
now that if the first statement is not true, then the second statement must be
true.

7. Again with respect to the two statements in the theorem, argue that they cannot
be true at the same time.
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7.2 Application: No-Arbitrage Pricing in Financial Economics

Consider an economy in which there are only two periods: present and future.
A state of nature is a comprehensive description of the world. In the future one of S
states of nature can occur.1 Denote by S = {1, . . . ,S} the set of dates – technically, the 1 In the words of K. Arrow (1971, Es-

says on the Theory of Risk Bearing, p.
45), it is “a description of the world so
complete that, if true and known, the
consequences of every action would be
known.”

sample space. For simplicity of notation, we will refer to the present as state s = 0.
An asset is a promise to pay a certain return, which may depend on the state of

the world: it is a random variable r : S→ R, with r(s) being the return in state s. In
this simple setting, we can simply identify an asset r with a (column) vector in RS,
namely with

r =


r1
r2
...
rS

 =


r(1)
r(2)
...
r(S)

 .

We assume that there are A assets, which we index by a ∈ A = {1, . . . ,A} and denote
by (r1, r2, . . . , rA). We will follow the convention of using superscripts to denote assets
and subscripts to denote states of nature:

ra =


ra1
ra2
...
raS

 .

The return matrix, or financial market, is R = (r1, r2, . . . , rA), an S×A matrix. We
also denote

R =


r1
r2
...
rS

 ,

so that rs ∈ RA is the vector of returns of all assets in state s, taken, by convention,
as a row.

The following conditions are assumed:

Condition 1. There exists a positive asset: r1 > 0.

Condition 2. There are no redundant assets: rank(R) = A.

The first condition implies little loss of relevance: cash, or sovereign debt, are con-
sidered to be positive. The second condition implies some loss of generality, but the
theory is well equipped to deal with this, as we will later see. The condition implicitly
requires that A 6 S.

The column span of the return matrix, 〈R〉, is called the space of feasible revenue
transfers, or the space of admissible claims. For a given revenue transfer ρ ∈ 〈R〉, the
(column) vector ϑ ∈ RA such that ρ = Rϑ is a portfolio with return ρ, or an investment
strategy that delivers ρ.

For each asset a ∈ A, we denote by qa ∈ R its price in the present market. The
vector of asset prices is q = (q1,q2, . . . ,qA), which we take as a row.
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7.2.1 No arbitrage

We say that an arbitrage opportunity exists at prices q if one can make money for
sure and for free: there is a portfolio ϑ such that Rϑ > 0 and qϑ 6 0 – that is, there
is a portfolio that makes no losses, and does win money in a certain state, and which
people can get for free, or even be paid to get it.

Exercise 7.2.1. Show that if there exists ϑ such that Rϑ > 0 and qϑ < 0, then an
arbitrage opportunity exists at prices q.

Definition 7.2.1. We say that q allows no arbitrage opportunities if Rϑ > 0 implies
qϑ > 0.

The basic theory of asset pricing is that markets in equilibrium cannot allow for
arbitrage opportunities. We, therefore, concentrate on the set of prices that allow no
arbitrage opportunities:

Q = {q ∈ RA | Rϑ > 0 =⇒ qϑ > 0}.

Exercise 7.2.2. Show that Q1 is nonempty and convex, is a (positive) cone2 and 2 That is, for all q ∈ Q1, for all α ∈
R++, αq ∈Q1satisfies that for all q ∈ Q1, q1 ∈ R++.

Example 7.2.1. Suppose that there are two assets and two states in the economy,
so that S = A = 2. Let the financial market be

R =

(
1 1
−1 0

)
.

Figure 7.1 shows the area of portfolios with positive returns. Two portfolios
there characterize this area: ϑ̄ = (0, 1) and ϑ̂ = (−1, 1). These two portfolios have
to be priced strictly positively, for otherwise they would be arbitrage opportunities.
This, then, requires that qϑ̄ = q2 > 0, and that qϑ̂ = −q1+q2 > 0. It is immediate
that

Q1 = {q ∈ R2 | q2 > q1 and q2 > 0}.

To verify this result, it suffices to notice that if q2 6 q1, then ϑ = (−1, 1)T is an
arbitrage opportunity; while if q2 6 0, then ϑ = (0, 1)T is an arbitrage opportunity.

Example 7.2.2. Suppose now that there are three states and two assets (namely,
S = 3 and A = 2), and let

R =

1 3
2 2
3 1


be the financial market.

Figure 7.2 shows the set of portfolios with positive return. Using some reference
portfolios, as in Example 7.2.1, we get that

Q1 =
{
q ∈ R2 | 13q

1 < q2 < 3q1
}
⊆ R2

++.

Once again, a good sanity check is to find arbitrage opportunities for typical
prices outside set Q1. Notice that if q2 6 1

3q
1, then ϑ = (−1, 3)T is an arbitrage

opportunity; if q2 > 3q1, then so is ϑ = (3,−1)T; if q1 6 0, then so is ϑ = (1, 0)T;
and if q2 6 0, then ϑ = (0, 1)T is an arbitrage opportunity.
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Example 7.2.1.
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Figure 7.2: Space of positive returns in
Example 7.2.2.

It turns out that the set of no-arbitrage prices is closely related to another set of
asset prices: those that can be explained as discounted expected returns of the assets.
For reasons that will be clear below, we define as rationalizable all vectors of asset
prices in set

Q2 = {q ∈ RA | ∃π ∈ RS++ : πR = q}.

It turns out that Q1 is closely related to another set of asset prices: those that can
be explained as discounted expected returns of the assets. Let

Q2 = {q ∈ RA | ∃π ∈ RS++ : πR = q},

where π is a measure (a generalization of a probability) and is taken as a row vector.
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Exercise 7.2.3. Show that Q2 is nonempty and convex, is a (positive) cone and
satisfies that for all q ∈ Q2, q1 ∈ R++.

Example 7.2.3. Consider the case of Example 7.2.1 above. It follows by direct
computation that

Q2 = {q ∈ R2 | q2 > q1 and q2 > 0}.

Similarly, in the case of Example 7.2.2, notice that

Q2 =
{
q ∈ R2 | 13q

1 < q2 < 3q1
}
.

Exercise 7.2.4. Let S = A = 2, and

R =

(
3 2
1 0

)
.

1. Find Q1 and Q2.

2. Find an arbitrage opportunity for each of the following prices: (1, 1), (−1, 1),
(−1,−1), and (1,−1).

Exercise 7.2.5. Let S = 3 and A = 2, and

R =

 1 2
−2 3
6 1

 .

1. Find Q1 and Q2.

2. Let q /∈ Q1 and find an arbitrage opportunity.

3. For the same q as in 3, find a portfolio with nonnegative returns in both states
and strictly negative cost, and show that this portfolio can be used to define an
arbitrage opportunity.

7.2.2 State prices

Given the previous examples and exercises, it should not be surprising that Q1 and
Q2 are closely related.

Theorem 7.2.1. Under Conditions 1 and 2, Q1 = Q2.

Proof. Suppose first that q̄ ∈ Q1 \Q2. Let Q = {q̄} and Q ′ = Q2. By the separating
hyperplane theorem, there exist ϑ ∈ RA \ {0} and k ∈ R such that ϑq̄ 6 k and for all
q ∈ Q2, while ϑq > k. Fix one such (ϑ,k), and observe the following:

1. If k > 0, then for q̂ ∈ Q ′, if α > 0 is close enough to 0, then ϑ(αq̂) = αϑq̂ < k,
which is impossible because αq̂ ∈ Q ′; so, k 6 0.

2. If there is q̂ ∈ Q ′ such that ϑq̂ < 0, then, for α > 0 large enough, ϑ(αq̂) = αϑq̂ < k,
which is impossible because αq̂ ∈ Q ′. So, we conclude that for all q ∈ Q ′, ϑq > 0,
from where it follows that ϑq̄ 6 0 and for all q ∈ Q ′, ϑq > 0.

3. If rŝϑ < 0, then, by defining π ∈ RS++ by πŝ = 1− ε and for all s ∈ S \ {ŝ}, πs = ε,
with ε ∈ (0, 1), we get that, if ε is small enough, qϑ = πRϑ < 0, which is impossible
because q = πR ∈ Q ′; so, it follows that Rϑ > 0.
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The latter implies that Rϑ > 0, because ϑ 6= 0 and Condition 2 holds. But, now,
Rϑ > 0 and q̄ϑ 6 0, which is impossible because q̄ ∈ Q1. It follows that Q1 ⊆ Q2.

Now, suppose that q ∈ Q2. Then, for some π ∈ RS++ we have that πR = q. Now,
it is immediate that if Rϑ > 0, then qϑ = πRϑ > 0, which implies that q ∈ Q1. Then,
Q2 ⊆ Q1.

The vector of π ∈ RS++ such that πR = q, given q that allows no arbitrage opportu-
nities, is the key variable in asset pricing theory (it is called an equivalent martingale
measure). Before we go further, it is important to understand what this variable mea-
sures.

Suppose that rŝϑ = 1 and rsϑ = 0 for every s ∈ § \ {ŝ}.3 If q allows no arbitrage, 3 That is, portfolio ϑ pays 1 if state
ŝ realizes and nothing otherwise; when
that portfolio consists of just one unit
of a given asset, such asset is called an
Arrow, or elementary, security.

then πR = q implies that ϑq = πŝ. This means that πs is the cost of a portfolio that
delivers 1 if state ŝ realizes and nothing otherwise: it is the marginal cost of one unit
of revenue in state ŝ. For this reason, π is called the vector of state prices.

Now, suppose that portfolio ϑ is such that rsϑ = 1+ i, for some constant i ∈ R+.
This means that portfolio ϑ has a risk-less return of 1+ i. If q allows no arbitrage,
then πR = q implies that ϑq =

∑S
s=1 πs(1 + i), so if i is taken to be an interest

rate paid on an investment of cost 1, without risk, it follows that qϑ = 1, and so∑S
s=1 πs = (1+ i)−1. Let π0 =

∑S
s=1 πs. By our previous result, it follows that π0 is

the discount factor associated to interest rate i.

7.2.3 The fundamental theorem of asset pricing

Clearly, state prices need not be well defined probabilities:
∑S
s=1 πs = 1 is not guar-

anteed. Importantly, if we now define p ∈ RS++ by

p =

(
π1
π0

,
π2
π0

, · · · , πS
π0

)
,

it follows that p is a legitimate vector of probabilities (it is crucial to notice that we
do not imply that these are the real probabilities, or some agent’s beliefs).

Before proceeding further, we strengthen Condition 1 to:

Condition 3. There is a riskless asset: r1 = (1, 1, · · · , 1)T.

Theorem 7.2.2 (The fundamental theorem of asset pricing). Let q ∈ Q1 and ρ ∈ 〈R〉.
If ϑ ∈ RS is such that Rϑ = ρ, then qϑ = (1 + i)−1Ep(ρ), for any probability
measure p ∈ RS++ that can be constructed as

p =

(
π1∑S
s=1 πs

,
π2∑S
s=1 πs

, · · · , πS∑S
s=1 πs

)
,

with π ∈ RS++ such that
∑S
s=1 πs = (1+ i)−1 and πR = q.

Proof. Since q ∈ Q1, ∃π ∈ RS++ such that πR = q. Since r1 = (1, 1, . . . , 1)T, it follows
that q1 =

∑S
s=1 πs. Define

i =
1∑S
s=1 πs

− 1

and

p =

(
π1∑S
s=1 πs

,
π2∑S
s=1 πs

, · · · , πS∑S
s=1 πs

)
,
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That
∑S
s=1 πs = (1+ i)−1 is by construction. Now,

qϑ = πRϑ = (

S∑
s=1

πs)pRϑ = (

S∑
s=1

πs)pρ = (1+ i)−1Ep(ρ),

which completes the proof.

It is important to notice that any two π and π ′ such that q = πR = π ′R will gener-
ate the same i. The theorem does not imply that portfolios should be valued as their
discounted expected return using one’s probabilistic beliefs, or some objective proba-
bilities! What it says is that if there are no arbitrage opportunities in the market, then
the value of a portfolio must necessarily be its discounted expected return according
to some probabilities.

7.3 Concave and Convex Functions

Suppose that X is a convex set. Function f : X → R is said to be concave if for
all x1 , x2 ∈ X and all ϑ ∈ [0, 1], it is true that

f(ϑx1 + (1 − ϑ)x2) > ϑf(x1) + (1 − ϑ)f(x2).

It is said to be convex if for all x1 , x2 ∈ X, and ϑ ∈ [0, 1],

ϑf(x1) + (1 − ϑ)f(x2) > f(ϑx1 + (1 − ϑ)x2)

Exercise 7.3.1. 1. Let X = R. Is f(x) = x a concave or a convex function?

2. Let X = R. Is f(x) = x2 a concave or a convex function?

3. Let X = R. Is f(x) = x3 a concave or a convex function? What if X = R+?

4. Let X = R+. Is f(x) =
√
x a concave or a convex function?

5. Let X = R. Is f(x) = |x| a concave or a convex function? What if X = R+?

6. Let X = R2. Is f(x) = x1 + x2 a concave or a convex function?

7. Let X = R2
+. Is f(x) = x1x2 a concave or a convex function?

Theorem 7.3.1. A function f : X → R is concave if, and only if, the function
(−f) : X → R, defined as (−f)(x) = −f(x), is convex.

The importance of the previous theorem is that it allows us to derive properties of
convex functions straightforwardly from those of the concave functions.

Theorem 7.3.2. If f : X → R is concave, then for all k ∈ N, and for any finite
sequences (xn)

k
n=1 and (ϑn)

k
n=1 satisfying that for all n ∈ {1, 2, . . . , k}, xn ∈ X,

and ϑn ∈ [0, 1] and that
∑k
n=1 ϑn = 1, it is true that4 4 Hint: remember Principle 1.3.1.

f

(
k∑
n=1

ϑnxn

)
>

k∑
n=1

ϑnf(xn)
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7.4 Concavity and Second-Order Derivatives

Notice that concavity is not a differential property. However, when a function
is twice differentiable, there exists a tight relationship between concavity, and the sign
of the second derivatives of the function.

Theorem 7.4.1. Consider f : X → R, f ∈ C2. Then, f is concave if, and only if,
for all x ∈ X, D2f(x) is negative semidefinite.

Proof. (If:) Let x1, x2 ∈ X and ϑ ∈ [0, 1]. Since X is convex, we have that ϑx1 + (1−
ϑ)x2 ∈ X, and by Taylor’s theorem, we have that

f(x1) = f(ϑx1 + (1− ϑ)x2) + (1− ϑ)Df(ϑx1 + (1− ϑ)x2)(x1 − x2)

+
(1− ϑ)2

2
(x1 − x2)

>D2f(x∗1)(x1 − x2)

and that

f(x2) = f(ϑx1 + (1− ϑ)x2) + ϑDf(ϑx1 + (1− ϑ)x2)(x2 − x1)

+
ϑ2

2
(x2 − x1)

>D2f(x∗2)(x2 − x1),

where x∗1 lies in the interval between x1 and ϑx1+ (1− ϑ)x2, and x∗2 lies in the interval
between x2 and ϑx1 + (1− ϑ)x2. Since for all x ∈ X, D2f(x is negative semidefinite, it
follows that

f(x1) 6 f(ϑx1 + (1− ϑ)x2) + (1− ϑ)Df(ϑx1 + (1− ϑ)x2)(x1 − x2)

f(x2) 6 f(ϑx1 + (1− ϑ)x2) + ϑDf(ϑx1 + (1− ϑ)x2)(x2 − x1).

Now, multiplying the first equation by ϑ and the second one by (1− ϑ), both of
which are nonnegative, and adding, one gets that

ϑf(x1) + (1− ϑ)f(x2)(ϑx1 + (1− ϑ)x2).

(Only if:)5 For all ϑ ∈ (0, 1] and for all x, x̄ ∈ X, x 6= x̄, we have that 5 For simplicity, we consider only the
case K = 1 here, and defer the general
case for the Appendix of the Chapter.f(ϑx+ (1− ϑ)x̄) > ϑf(x) + (1− ϑ)f(x̄).

Denote ∆ = x− x̄ 6= 0. This implies that x = x̄+∆ and that

ϑx+ (1− ϑ)x̄ = x̄+ ϑ∆,

so that our inequality becomes

f(x̄+ ϑ∆) > ϑf(x̄+∆) + (1− ϑ)f(x̄),

Since ϑ 6= 0, this is

f(x̄+∆) 6 f(x̄) +

[
f(x̄+ ϑ∆) − f(x̄)

ϑ∆

]
∆,

and since the latter is true for all ϑ 6= 0 it is also true when we take ϑ → 0.6 This

6 By Corollary 2.6.1.

implies that7

7 The following inequality is impor-
tant by itself. If says that when
a differentiable function is concave,
it first-order Taylor approximation al-
ways overestimates it.



78 andrés carvajal – uc davis

f(x̄+∆) 6 f(x̄) + f ′(x̄)∆. (∗)

Now, keeping x̄ fixed, fix also z ∈ R \ {0}. Consider the function

ϕ : {ϑ ∈ [0, 1]|(x̄+ ϑz) ∈ X}→ R,

defined by ϕ(ϑ) = f(x̄+ ϑz). Since f ∈ C2, we have ϕ ∈ C2 , and by the chain rule

ϕ ′(ϑ) = f ′(x̄+ ϑz)z

and
ϕ ′′(ϑ) = f ′(x̄+ ϑz)z2.

Also, for all ϑ ∈ (0, 1], by Taylor’s theorem, 5.4.2, we have that for some ϑ∗ ∈ [0, ϑ],

ϕ(ϑ) = ϕ(0) +ϕ ′(0)ϑ+
1
2
ϕ ′′(ϑ∗)ϑ2,

which means that

f(x̄+ ϑz) = f(x̄) + f ′(x̄)zϑ+
1
2
f ′′(x̄+ ϑ∗z)z2ϑ2,

so that
1
2
f ′′(x̄+ ϑ∗z)z2ϑ2 = f(x̄+ ϑz) − f(x̄) − f ′(x̄)zϑ.

By Equation (∗) above, we have that the right hand side of the last inequality is
non-positive.8 Moreover, since ϑ > 0 and z 6= 0, this implies that f ′′(x̄+ ϑ∗z) 6 0. 8 Just use zϑ instead of ∆.

Finally, since ϑ∗ ∈ [0, ϑ] and f ∈ C2, if we take the limit as ϑ → 0, we find that
f ′′(x̄) 6 0.

Corollary 7.4.1. Consider f : X → R, f ∈ C2. Then, f is convex if, and only if,
for all x ∈ X, D2f(x) is positive semidefinite.

Proof. It follows directly from Theorems 7.3.1, 7.4.1 and 5.1.3.

Exercise 7.4.1 (L’Hopital’s rule is really useful, II). We now get another proof of
the only if part of Theorem 7.4.1 for the case K = 1. Your job is to complete and
justify all the steps. We argue by contradiction: given f : X→ R, f ∈ C2, suppose
that f is concave but for some x ∈ X, f ′′(x) > 0. Take y ∈ X \ {x} and ϑ ∈ (0, 1).
By concavity, we have that

f(ϑx+ (1− ϑ)y) > ϑf(x) + (1− ϑ)f(y).

Now, since f ∈ C2, we can use the mean value theorem to get that

f(ϑx+ (1− ϑ)y) > f(x) + (1− ϑ)f ′(x)(y− x) + (1− ϑ)
1
2
f ′′(x∗)(y− x)2

for some x∗ in the interval between x and y. Since y ∈ X \ {x}, this implies

(1− ϑ)
1
2
f ′′(x∗) 6

f(ϑx+ (1− ϑ)y) − f(x) − (1− ϑ)f ′(x)(y− x)
(y− x)2

.

You can use L’Hopital’s rule and the chain rule (twice) to show that

lim
y→x

f(ϑx+ (1− ϑ)y) − f(x) − (1− ϑ)f ′(x)(y− x)
(y− x)2

= (1− ϑ)2
1
2
f ′′(x),
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while
lim
y→x

((1− ϑ)
1
2
f ′′(x∗)) = (1− ϑ)

1
2
f ′′(x),

and, therefore,

(1− ϑ)
1
2
f ′′(x) 6 (1− ϑ)2

1
2
f ′′(x).

Now, since f ′′(x) > 0, this implies that (1− ϑ) 6 (1− ϑ)2, contradicting the fact
that ϑ ∈ (0, 1).

7.5 Quasiconcave and Strongly Concave Functions

Again, suppose that X is a convex set. A function f : X → R is said to be
quasiconcave if for all x1 , x2 ∈ X, and all ϑ ∈ [0, 1], it is true that

f(ϑx1 + (1 − ϑ)x2) > min{f(x1), f(x2)}.

It is said to be strictly concave if for all x1 , x2 ∈ X and ϑ ∈ [0, 1] it is true that

f(ϑx1 + (1 − ϑ)x2) > ϑf(x1) + (1 − ϑ)f(x2).

Finally, f : X → R is said to be strongly quasiconcave if for all x1 , x2 ∈ X and
ϑ ∈ (0, 1), it is true that

f(ϑx1 + (1 − ϑ)x2) > min{f(x1), f(x2)}.

As before, we can find relationships between concavity, convexity and second-order
derivatives. Again, we assume that X is convex.

Theorem 7.5.1. Consider f : X → R ∈ C2. If for all x ∈ X, Df(x) 6= 0 and for
all ∆ ∈ RK \ {0} such that ∆ · Df(x) = 0, it is true that ∆>D2f(x)∆ < 0, then f
is strictly concave.

Proof. The proof is complicated and therefore omitted.

Notice that the previous result is pretty intuitive from the point of view of a second-
order Taylor approximation.

Theorem 7.5.2. Consider f : X → R, a twice differentiable function. If for all
x ∈ X, D2f(x) is negative definite, then f is strictly concave.

Notice that in Theorems 7.5.1 and 7.5.2, the condition is sufficient but not necessary
(in contrast with Theorem 7.4.1). Of course, definitions and corollaries for convex,
quasiconvex and strictly convex functions follow straightforwardly.

7.6 Composition of Functions and Concavity

A key point to observe is that quasiconcavity is an ordinal property, whereas
concavity has cardinal character:

Theorem 7.6.1. If f : X → R is quasiconcave and g : R → R is increasing (i.e.
y ′ > y ⇒ g(y ′) > g(y)), then g ◦ f is quasiconcave.
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Theorem 7.6.2. If f : X → R is concave and g : R → R is concave and increasing,
then g ◦ f is concave.

Exercise 7.6.1. Propose and prove a result analogous to the previous one to imply
that g ◦ f is strictly concave.

Appendix

Our goal is to generalize the necessity part of Theorem 7.4.1 to K > 2. That is, to argue
that f ∈ C2 is concave only if for all x ∈ D, matrix D2f(x) is negative semidefinite.

Given x ∈ D and ∆ ∈ RK \ {0}, define

Dx,∆ = {δ ∈ R | x + δ∆ ∈ D} ⊆ R

ϕx,∆ : Dx,∆ → R;ϕx,∆(δ) = f(x + δ∆)

We use the following lemmas

Lemma 7.6.1. Let x ∈ D and ∆ ∈ Rn \ {0}. If D is convex, Dx,∆ is convex. If f is
concave, ϕx,∆ is concave. If ∆ is open, ∆x,∆ is open. If f is differentiable, then
ϕx,∆ is differentiable and for all δ ∈ Dx,∆, ϕ ′x,∆(δ) = ∆ ·Df(x + δ∆). If f ∈ C2,
then ϕx,∆ ∈ C2 and for all δ ∈ Dx,∆, ϕ ′x,∆(δ) = ∆>D2f(x + δ∆)∆.

Proof. We first show that Dx,∆ is convex: let δ, δ ′ ∈ Dx,∆ and λ ∈ [0, 1]. By
definition, x+ δ∆ ∈ D and x+ δ ′∆ ∈ D. Since D is convex, λ(x+ δ∆) + (1− λ)(x+
δ ′∆) = x + (λδ + (1 − λ)δ ′)∆ ∈ D, so (λδ + (1 − λ)δ ′) ∈ Dx,∆.

We now show that ϕx,∆ is concave. Let δ, δ ′ ∈ Dx,∆ and λ ∈ [0, 1]. By definition,
x + δ∆ ∈ D and x + δ ′∆ ∈ D. By concavity,

ϕx,∆(λδ + (1 − λ)δ ′) = f(x + (λδ + (1 − λ)δ ′)∆)

= f(λ(x + δ∆) + (1 − λ)(x + δ ′∆))

> λf(x + δ∆) + (1 − λ)f(x + δ ′∆)

= λϕx,∆(δ) + (1 − λ)ϕx,∆(δ ′)

To see that Dx,∆ is open, let δ ∈ Dx,∆. By definition, x + δ∆ ∈ D and, since D is
open, ∃ε ′ > 0 such that Bε ′ (x + δ∆) ⊆ D. Define ε = ε ′/‖∆‖ > 0 and suppose that
δ ′ ∈ Bε(δ). Then, ‖x− (x+ δ ′∆)‖ = |δ|‖∆‖ < ε‖∆‖ = ε ′, so x+ δ ′∆ ∈ Bε ′ (x) ⊆ D
and, hence, δ ′ ∈ Dx,∆, which implies that Bε(δ) ⊆ Dx,∆.

That if f is differentiable, then ϕx,∆ is differentiable and for all δ ∈ Dx,∆, ϕ ′x,∆(δ) =
∆ · Df(x + δ∆), and if f ∈ C2, then ϕx,∆ ∈ C2 and ∀δ ∈ Dx,∆ , ϕ ′′x,∆(δ) =

∆>D2f(x + δ∆)∆ is left as an exercise.

Lemma 7.6.2. Suppose that there exists x ∈ D such that D2f(x) is not negative
semidefinite. Then, there exists ∆ ∈ Rn \ {0} such that ϕx,∆ is not concave.

Proof. Since D2f(x) is not negative semidefinite, there is ∆ ∈ Rn \ {0} such that

∆>D2f(x)∆ > 0,

and by the previous lemma ϕx,∆ ∈ C2 and ϕ ′x,∆(0) > 0. From the case K = 1, it
follows that ϕx,∆ is not concave.
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Unconstrained Maximization

Throughout this chapter, we maintain the assumptions that set D ⊆ RK, for
a finite K, is nonempty.

8.1 Maximizers

We start with a result that illustrates that, in a sense, the supremum of a set
may be too weak as a concept of optimality.

Theorem 8.1.1. Let Y ⊆ R and let b = sup Y. One has that b /∈ Y if, and only if,
for all a ∈ Y, there is an a ′ ∈ Y such that a ′ > a.

Proof. Sufficiency is left as an exercise. For necessity, note that if there is an a ∈ Y
such that for all a ′ ∈ Y it is true that a ′ 6 a, then, by definition, b 6 a, whereas
a 6 b, which implies that b = a ∈ Y, a contradiction.

It follows that we need a stronger concept of extremum, in particular one that
implies that the extremum lies within the set. Thus, a point b ∈ R is said to be the
maximum of set Y ⊆ R, denoted b = maxA, if b ∈ Y and for all a ∈ Y it is true
that a 6 b. The proofs of the following two results are left as exercises.

Theorem 8.1.2. If max Y exists, then it is unique.

Theorem 8.1.3. If max Y exists, then sup Y exists and sup Y = max Y. If sup Y
exists and sup Y ∈ Y, then max Y exists and max Y = sup Y.

Exercise 8.1.1. Given Y , Y ′ ⊆ R, prove the following:

1. If Y 6= ∅ and Y ′ 6= ∅ are such that for all (a, a ′) ∈ Y × Y ′ one has that
a 6 a ′, then sup Y and inf Y ′ exist, and sup Y 6 inf Y ′.

2. If sup Y and sup Y ′ exist, λ, λ ′ ∈ R++ and

Ỹ = {ã | ∃(a, a ′) ∈ Y × Y ′ : λa + λ ′a ′ = ã},

then sup Ỹ = λ sup Y + λ ′ sup Y ′.

3. If sup Y and sup Y ′ exist, and for all a ∈ Y there is an a ′ ∈ Y ′ such that
a 6 a ′, then sup Y 6 sup Y ′.
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Show also that a strict version of the third statement is not true.

The following theorem will prove useful.

Theorem 8.1.4. If Y ⊆ R is closed and sup Y exists, then max Y exists and
max Y = sup Y.

Proof. Let ȳ = sup Y. By Theorem 3.3.1, for all n ∈ N there is some yn ∈ Y for
which ȳ − 1/n < yn < ȳ. Clearly, yn → ȳ, so, since Y is closed, ȳ ∈ Y.

Now, it typically is of more interest in economics to find extrema of functions, rather
than extrema of sets. To a large extent, the distinction is only apparent: what we will
be looking for are the extrema of the image of the domain under the function. A point
x̄ ∈ D is said to be a global maximizer of f : D → R if for all x ∈ D it is true that
f(x) 6 f(x̄). Point x̄ ∈ D is said to be a local maximizer of f : D → R if there exists
some ε > 0 such that for every x ∈ Bε(x̄) ∩D it is true that f(x) 6 f(x̄).

When x̄ ∈ D is a local (global) maximizer of f : D → R, the number f(x̄) is
said to be a local (the global) maximum of f. Notice that, in the latter case, f(x̄) =
max f[D], although more standard notation for max f[D] is maxD f or maxx∈D f(x).1 1 A point x̄ ∈ D is said to be a local

minimizer of f : D→ R if there is an
ε > 0 such that for all x ∈ Bε(x̄)∩D
it is true that f(x) > f(x̄). Point
x̄ ∈D is said to be a global minimizer
of f : D → R if for every x ∈ D it is
true that f(x) > f(x̄). From now on,
we only deal with maxima, although
the minimization problem is obviously
covered by analogy.

Notice that there is a conceptual difference between maximum and maximizer! Also,
notice that a function can have only one global maximum even if it has multiple global
maximizers, but the same is not true for the local concept. The set of maximizers of a
function is usually denoted by argmaxDf.

By analogy, b ∈ R is said to be the supremum of f : D → R, denoted b = supD f
or b = supx∈D f(x), if b = sup f[D]. Importantly, note that there is no reason why
∃x ∈ D such that f(x) = supD f even if the supremum is defined.

8.2 Existence

We now present a weak version of a result that is very useful in economics.

Theorem 8.2.1 (Weierstrass). Let C ⊆ D be nonempty and compact. If the function
f : D → R is continuous, then there are x̄, x ∈ C such that for all x ∈ C it is true
that f(x) 6 f(x) 6 f(x̄).

Proof. It follows from Theorem 4.2.3 that f[C] is compact. Now, let ȳ = sup f[C],
which exists by Axiom 3.3.1. By Theorem 8.1.4, ȳ ∈ f[C], and it follows that there
is x̄ ∈ C such that f(x̄) = ȳ. By definition, then, for every x ∈ C it is true that
f(x) 6 ȳ = f(x̄).and it follows that there is x̄ ∈ C such that f(x̄) = ȳ. By definition,
then, for every x ∈ C it is true that f(x) 6 ȳ = f(x̄).

Existence of x is left as an exercise.

The importance of this result is that when the domain of a continuous function is
closed and bounded, then the function does attain its maxima and minima within its
domain. This allows is to obtain many important results in economics and mathemat-
ics. The following argument illustrates this.

Proof of Lemma 7.1.1: Since Q 6= ∅, we can fix q̃ ∈ Q. Note that set

C = {q ∈ Q | ‖q− q̄‖ 6 ‖q̃− q̄‖}
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is nonempty and compact. Since function ‖q− q̄‖ is continuous, 8.2.1 guarantees that
problem minq∈C ‖q− q̄‖ has a solution. Any solution to this problem also solves

min
q∈Q

‖q− q̄‖, (∗)

by construction.
Let q∗ solve the latter problem, and construct ϑ = q∗ − q̄ and k = ϑq∗. By

construction, ϑ 6= 0 and q∗ϑ = k. To see that q̄ϑ < k, it suffices to note that

q̄ϑ = (q∗ − ϑ)ϑ = k− ‖ϑ‖2 < k.

We need to prove that qϑ > k for all q ∈ Q. We argue by contradiction: suppose
that for some q ∈ Q, qϑ < k. Note that for every α ∈ [0, 1], qα = αq+ (1−α)q∗ ∈ Q,
since Q is convex. Now,

‖q̄− q∗‖2 − ‖q̄− qα‖2 = ‖q̄− q∗‖2 − ‖q̄− q∗ −α(q− q∗)‖2

= 2α(q̄− q∗) · (q̄− q∗) −α2‖q− q∗‖2

= α[2(k− q∗ϑ) −α‖q− q∗‖2].

By assumption k− q∗ϑ > 0. For alpha > 0 small enough, then,

‖q̄− q∗‖2 − ‖q̄− qα‖2 > 0,

so ‖q̄−q∗‖ > ‖q̄−qα‖0, which is impossible since qα ∈ Q and q∗ solves (∗). Q.E.D.

8.3 Characterizing Maximizers

Even though maximization is not a differential problem, when one has differen-
tiability there are results that make it easy to find maximizers. For this section, we
take set D to be open.

8.3.1 Problems in R

For simplicity, we first consider the case K = 1.

Lemma 8.3.1. Suppose that f : D → R is differentiable. Let x̄ ∈ X. If f ′(x̄) > 0,
then there is some δ > 0 such that for every x ∈ Bδ(x̄)∩D we have f(x) > f(x̄) if
x > x̄, and that f(x) < f(x̄) if x < x̄.

Proof. By assumption, we have f ′(x̄) ∈ R++. Then, by definition, there is some δ > 0
such that for any x ∈ B ′δ(x̄)∩D,

|
f(x) − f(x̄)

x− x̄
− f ′(x̄)| < f ′(x̄),

and, by Exercise 2.2.2, since f ′(x̄) > 0, (f(x) − f(x̄))(x− x̄) > 0.

The analogous result for the case of a negative derivative is presented, without proof,
as the following corollary.
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Corollary 8.3.1. Suppose that f : D→ R is differentiable. Let x̄ ∈ D. If f ′(x̄) < 0,
then there is some δ > 0 such that for every x ∈ Bδ(x̄)∩D we have f(x) < f(x̄) if
x > x̄, and that f(x) > f(x̄) if x < x̄.

Theorem 8.3.1. Suppose that f : D → R is differentiable. If x̄ ∈ int(D) is a local
maximizer of f then f ′(x̄) = 0.

Proof. Suppose not: f ′(x̄) 6= 0. If f ′(x̄) > 0, then, by Lemma 8.3.1, there is δ > 0
such that for all x ∈ Bδ(x̄) ∩D satisfying x > x̄ we have that f(x) > f(x̄). Since x̄
is a local maximizer of f, then there is ε > 0 such that for all x ∈ Bε(x̄) ∩D it is
true that f(x) 6 f(x̄). Since x̄ ∈ int(D), there is γ > 0 such that Bγ(x̄) ⊆ D. Let
β = min{ε, δ,γ} > 0. Clearly, (x̄, x̄ + β) ⊂ B ′β(x̄) 6= ∅ and B ′β(x̄) ⊆ D. Moreover,
B ′β(x̄) ⊆ Bδ(x̄) ∩D and B ′β(x̄) ⊆ Bε(x̄) ∩D. This implies that for some x one has
f(x) > f(x̄) and f(x) 6 f(x̄), an obvious contradiction. A similar contradiction appears
if f ′(x̄) < 0, by Corollary 8.3.1.

Theorem 8.3.2. Let f : D → R be of class C2. If x̄ ∈ int(D) is a local maximizer
of f then f ′′(x̄) 6 0.

Proof. Since x̄ ∈ int(D), there is a ε > 0 for which Bε(x̄) ⊆ D. For every h ∈ Bε(0),
since f is twice differentiable, by Taylor’s theorem (Theorem 5.4.2), there is some x∗h
in the interval joining x̄ and x̄+ h, such that

f(x̄+ h) = f(x̄) + f ′(x̄)h+
1
2
f ′′(x∗h)h

2.

Since x̄ is a local maximizer, there is a δ > 0 such that x ∈ Bδ(x̄) ∩D implies f(x) 6
f(x̄). Let β = min{ε, δ} > 0. By construction, for any h ∈ B ′β(0) one has that

f ′(x̄)h+
1
2
f ′′(x∗h)h

2 = f(x̄+ h) − f(x̄) 6 0.

By Theorem 8.3.1, since f is differentiable and x̄ is a local maximizer, f ′(x̄) = 0, from
where h ∈ B ′β(0) implies that f ′′(x∗h)h

2 6 0, and hence that f ′′(x∗h) 6 0. Now, letting
h→ 0, we get, by Theorem 2.6.11, that limh→0 f

′′(x∗h) 6 0, and hence that f ′′(x̄) 6 0,
since f ′′ is continuous and each xh lies in the interval joining x̄ and x̄+ h.

Exercise 8.3.1. Prove theorems analogous to the previous two, for the case of
local minimizers.

Notice that the last theorems only give us necessary conditions:2 this is not a tool 2 And there are further necessary con-
ditions.that tells us which points are local maximizers, but it tells us what points are not. A

complete characterization requires both necessary and sufficient conditions. We now
find sufficient conditions.

Theorem 8.3.3. Suppose that f : D→ R is twice differentiable. Let x̄ ∈ int(D). If
f ′(x̄) = 0 and f ′′(x̄) < 0, then x̄ is a local maximizer.

Proof. Since f : D → R is twice differentiable and f ′′(x̄) < 0, we have, by Corollary
8.3.1, that for some δ > 0 it is true that whenever x ∈ Bδ(x̄) ∩D we have that (i
)f ′(x) < f ′(x̄) = 0, when x > x̄; and (ii )f ′(x) > f ′(x̄) = 0, when x < x̄. Since
x ∈
∫
(D), there is an ε > 0 such that Bε(x̄) ⊆ D. Let β = min{δ, ε} > 0. By the Mean

Value Theorem (Theorem 5.4.1), we have that for all x ∈ Bβ(x̄),

f(x) = f(x̄) + f ′(x∗)(x− x̄)
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for some x∗ in the interval between x̄ and x (why?). Thus, if x > x̄, we have x∗ > x̄,
and, therefore, f ′(x∗) 6 0, so that f(x) > f(x̄). On the other hand, if x < x̄, then
f ′(x∗) > 0, so that f(x) 6 f(x̄).

Exercise 8.3.2. Prove an analogous theorem, for the case of a local minimizer.

Notice that the sufficient conditions are stronger than the set of necessary conditions:
there is a little gap that the differential method does not cover.

8.3.2 Higher-dimensional problems

We now allow for functions defined on higher-dimesional domains (namely K > 2), and
use the results of the one-dimensional case, using the definition on the appendix of
Chapter 7.

Lemma 8.3.2. If x∗ ∈ D is a local maximizer of f : D→ R, then for all ∆ ∈ RK \ {0},
0 is a local maximizer of ϕx∗,∆.

Proof. Let ∆ ∈ RK \ {0}. By construction there is ε ′ > 0 such that f(x) 6 f(x∗)

for all x ∈ Bε ′(x∗) ∩D. Define ε = ε ′/‖∆‖ and suppose that δ ∈ Bε(0) ∩Dx∗,∆. By
construction, ‖x∗−(x∗+δ∆)‖ = |δ|‖∆‖ < ε‖∆‖ = ε ′, while x∗+δ∆ ∈ D, which implies
that x∗+ δ∆ ∈ Bε ′(x∗)∩D and, hence, ϕx∗,∆(δ) = f(x∗+ δ∆) 6 f(x∗) = ϕx∗,∆(0).

The previous lemma implies the following result.

Theorem 8.3.4. If f : D→ R is differentiable and x∗ ∈ D is a local maximizer of
f, then Df(x∗) = 0.

Proof. By Lemma 8.3.2, for every k = 1, . . . ,K, 0 is a local maximizer of ϕx∗,eK , where
ek is the k-th canonical vector in RK. Since ϕx∗,ek is differentiable, by Lemma 7.6.1,
it follows from Theorem 8.3.1 than ϕ ′x∗,ek(0) = 0, whereas, again by Lemma 7.6.1,
ϕ ′x∗,ek(0) = ek ·Df(x

∗) = ∂f
∂xk

(x∗).

Theorem 8.3.5. If f : D→ R is of class C2 and x∗ ∈ D is a local maximizer of f,
then D2f(x∗) is negative semidefinite.

Proof. Let ∆ ∈ RK \ {0}. By Lemma 8.3.2 and Theorem 8.3.2, ϕ ′′x∗,∆(0) 6 0, whereas,
by Lemma 7.6.1, ϕ ′′x∗,∆(0) = ∆

>D2f(x∗)∆.

As before, these conditions do not tell us which points are maximizers, but only
which ones are not. Before we can argue sufficiency, we need to introduce the following
lemma.

Lemma 8.3.3. If f : D → R is of class C2 and D2f(x∗) is negative definite, then
there exists ε > 0 such that for every x ∈ Bε(x∗), D2f(x) is negative definite.

Proof. Suppose not. Then, for each n ∈ N, there are an xn ∈ B1/n(x∗) and a ∆n ∈
RK \ {0} such that ∆>nD2f(xn)∆ > 0. Since ∆n 6= 0, we can assume, without losing
generality, ‖∆n‖ = 1. Then, it follows that for some subsequence (xn(m),∆n(m))

∞
m=1

we have that, for all m ∈ N, ∆>
n(m)D

2(xn(m))∆n(m) > 0, and (xn(m),∆n(m)) →
(x∗,∆) for some ∆ such that ‖∆‖ = 1. Since f ∈ C2, ∆>D2f(x∗)∆ > 0, contradicting
the negative definiteness of D2f(x∗).
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Theorem 8.3.6. Suppose that f : D→ R is of class C2 and let x̄ ∈ D. If Df(x̄) = 0
and D2f(x̄) is negative definite, then x̄ is a local maximizer.

Proof. The argument is left as an exercise. (Hint: use the previous lemma.)

8.4 Maxima and Concavity

For the purposes of this section, we take D ⊆ RK, K ∈N, D 6= ∅ and drop the
openness assumption.

Note that the results that we obtained in the previous sections hold only locally.
We now study the extent to which local extrema are, in effect, global extrema.

Theorem 8.4.1. Suppose that D is a convex set and f : D → R is a concave
function. Then, if x̄ ∈ D is a local maximizer of f, it is also a global maximizer.

Proof. We argue by contradiction: suppose that x̄ ∈ D is a local maximizer of f, but
it is not a global maximizer. Then, there is ε > 0 such that for every x ∈ Bε(x̄) ∩D,
f(x)(x̄); and there is x∗ ∈ D such that f(x∗) > f(x̄). Clearly, then, x∗ /∈ Bε(x̄), which
implies that ‖x∗ − x̄‖ > ε. Now, since D is convex and f is concave, we have that for
ϑ ∈ [0, 1],

f(ϑx∗ + (1− ϑ)x̄) > ϑf(x∗) + (1− ϑ)f(x̄),

but, since f(x∗) > f(x̄), we further have that if ϑ ∈ (0, 1], then ϑf(x∗) + (1− ϑ)f(x̄) >
f(x̄), so that f(ϑx∗ + (1− ϑ)x̄) > f(x̄).

Now, consider ϑ∗ ∈ (0, ε/‖x∗ − x̄‖). Clearly, ϑ∗ ∈ (0, 1), so f(ϑ∗x∗ + (1− ϑ∗)x̄) >
f(x̄). However, by construction,

‖(ϑ∗x∗ + (1− ϑ∗)x̄) − x̄‖ = ϑ∗‖x∗ − x̄‖ < (
ε

‖x∗ − x̄‖
)‖x∗ − x̄‖ = ε,

which implies that (ϑ∗x∗ + (1− ϑ∗)x̄) ∈ Bε(x̄), and, moreover, by convexity of D, we
have that (ϑ∗x∗ + (1− ϑ∗)x̄) ∈ Bε(x̄) ∩D. This contradicts the fact that f(x) 6 f(x̄)
for all x ∈ Bε(x̄)∩D.

Exercise 8.4.1. Prove an analogous theorem, for the case of a local minimizer.

Theorem 8.4.2. Suppose that D is convex, f : D→ R is of class C2 and for each
x ∈ D, D2f(x) is negative definite. Then, there exists at most one point x̄ ∈ D
such that Df(x̄) = 0. If such point exists, it is a global maximizer.

Proof. We first prove the last part of the theorem. Suppose that there is x̄ ∈ D
such that Df(x̄) = 0. By assumption, Df ′′(x̄) is negative definite, and therefore, by
Theorem 8.3.6, x̄ is a local maximizer. Since Df(x) is negative definite everywhere,
by Theorem 7.5.2, we have that f is concave and, therefore, by Theorem 8.4.1, x̄ is a
global maximizer.

We must now show that there cannot exist more than one such point. We argue by
contradiction: suppose that there are distinct x̄1, x̄2 ∈ D such that f ′(x̄1) = f ′(x̄2) = 0.
By our previous argument, both x̄1 and x̄2 are global maximizers, so that f(x̄1) = f(x̄2).
Now, since D2f(x) is negative definite everywhere, by Theorem 7.5.2, we have that f
is strictly concave, and

f

(
1
2
x̄1 +

1
2
x̄2

)
>

1
2
f(x̄1) +

1
2
f(x̄2) = f

′(x̄1) = f
′(x̄2),
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contradicting the fact that both x̄1 and x̄2 are global maximizers, since D is convex.

Exercise 8.4.2. Prove an analogous theorem, for the case when D2f(x) is positive
definite everywhere.





9
Constrained Maximization

Suppose that f : R → R is differentiable, and suppose that for a, b ∈ R,
a < b, we want to find x∗ ∈ [a, b] such that f(x) 6 f(x∗) at all x ∈ [a, b]. That is,
we want to solve the problem

max f(x) : x > a and x 6 b.

If x∗ ∈ (a, b) solves the problem, then x∗ is a local maximizer of f (why?), and
it follows from Theorem 8.3.1 that f ′(x∗) = 0. If, alternatively, x∗ = b solves the
problem, then by Corollary 8.3.1, it must be that f ′(x∗) > 0. Finally, if x∗ = a solves
the problem, it follows from Lemma 8.3.1 that f ′(x∗) 6 0.

It is then straightforward that if x∗ solves the problem, then there exist λ∗a , λ∗b ∈
R+ such that f(x∗) − λ∗b + λ∗a = 0, λ∗a(x∗ − a) = 0 and λ∗b(b − x∗) = 0.1 It is 1 The second and third conditions sim-

ply express that (i) if x∗ ∈ (a,b), then
λ∗a = 0 and λ∗b = 0; (ii) if x∗ = b, then
λ∗a = 0 and λ∗b > 0; and (iii) if x∗ = a,
then λ∗a > 0 and λ∗b = 0.

customary to define a function

L : R3 → R;L(x, λa, λb) = f(x) + λb(b− x) + λa(a− x),

which is called the Lagrangean, and with which the first condition can be re-written
as

∂L

∂x
(x∗, λ∗a, λ

∗
b) = 0.

In this section we show how these Lagrangean methods work, and emphasize when
they fail.

9.1 Equality constraints

For this section, we maintain the assumptions that D ⊆ RK, K finite, is open,
and that f : D→ R and g : D→ RJ, with J 6 K.

Suppose that we want to solve the problem

max
x∈D

f(x) : g(x) = 0, (9.1)

which means, in our previous notation, that we want to find max{x∈D|g(x)=0} f. The
method that is usually applied in economics consists of the following steps: (1) defining
the Lagrangean function L : D×RJ → R, by L(x, λ) = f(x) + λ · g(x); and (2) finding
(x∗, λ∗) ∈ D×RJ such that DL(x∗, λ∗) = 0. That is, a recipe is applied as though
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there is a “result” that states the following:

Let f and g be differentiable. x∗ ∈ D solves Problem (9.1) if, and only if, there exists
λ∗ ∈ RJ such that Df(x∗) + λ∗>Dg(x∗) = 0.

Unfortunately, though, such a statement is not true, for reasons that we now study.
For simplicity of presentation, suppose that D = R2 and J = 1, and denote the

typical element of R2 by (x,y). So, given f : R2 → R and g : R2 → R, we want to find

max
(x,y)∈R2

f(x,y) : g(x,y) = 0.

Let us suppose that we do not know the Lagrangean method, but are quite familiar
with unconstrained optimization. A "crude" method suggests the following:

(1) Suppose that we can solve from the equation g(x,y) = 0, to express y as a function
of x: we find a function y : R→ R such that g(x,y) = 0 if, and only if y = y(x).

(2) With the function y at hand, we study the unconstrained problem maxx∈R F(x),
where F : R→ R is defined by F(x) = f(x,y(x)).

(3) Since we want to use calculus, if f and g are differentiable, we need to figure out
function y ′. Now, if g(x,y(x)) = 0, then, differentiating both sides, we get that
∂xg(x,y(x)) + ∂yg(x,y(x))y ′(x) = 0, from where

y ′(x) = −
∂xg(x,y(x))
∂yg(x,y(x))

.

(4) Now, with F differentiable, we know that x∗ solves maxx∈R F(x) locally, only if
F ′(x∗) = 0.

In our case, the last step is simply that

∂xf(x
∗,y(x∗)) + ∂yf(x∗,y(x∗))y ′(x∗) = 0,

or, equivalently,

∂xf(x
∗,y(x∗)) − ∂yf(x∗,y(x∗))

∂xg(x
∗,y(x∗))

∂yg(x∗,y(x∗))
= 0.

So, if we define y∗ = y(x∗) and

λ∗ = −
∂yf(x

∗,y(x∗))
∂yg(x∗,y(x∗))

∈ R,

we get that
∂xf(x

∗,y(x∗)) + λ∗∂xg(x∗,y(x∗)) = 0,

whereas
∂yf(x

∗,y(x∗)) + λ∗∂yg(x∗,y(x∗)) = 0.

Then, our method has apparently shown that:

Let f and g be differentiable. x∗ ∈ D locally solves the Problem (9.1),2 only if there 2 That is, there is ε > 0 such that

f(x) 6 f(x∗)

for all

x ∈ Bε(x∗)∩ {x ∈D | g(x) = 0}.

exists λ∗ ∈ RJ such that Df(x∗) + λ∗>Dg(x∗) = 0.

The latter means that: (i) as in the unrestricted case, the differential approach, at
least in principle, only finds local extrema; and (ii) the Lagrangean condition is only
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necessary and not sufficient by itself. So, we need to be careful and study further
conditions for sufficiency. Also, we need to determine under what conditions can we
find the function y and, moreover, be sure that it is differentiable.

For sufficiency, we can again appeal to our crude method and use the sufficiency
results we inherit from unconstrained optimization. Since we now need F to be dif-
ferentiable twice, so as to make it possible that F ′′(x∗) < 0, we must assume that so
are f and g, and moreover, we need to know y ′′(x). Since we already know y ′(x), by
differentiation,

y ′′(x) = −
∂

∂x
(
∂xg(x,y(x))
∂yg(x,y(x))

)

= −
1

∂yg(x,y(x))
( 1 y ′(x) )D2g(x,y(x))

(
1

y ′(x)

)

Now, the condition that F ′′(x∗) < 0 is equivalent, by substitution,3 to the requirement 3 Note that F ′′(x) equals

∂2xxf(x,y(x))

+∂2xyf(x,y(x))y
′(x)

+∂2yx(x,y(x))y
′(x)

+∂2yyf(x,y(x))y
′(x)2

+∂yf(x,y(x))y ′′(x)),

or, by substitution,

(1,y ′(x))D2f(x,y(x))
(

1
y ′(x)

)
−
∂yf(x,y(x))
∂yg(x,y(x))

×

(1,y ′(x))D2g(x,y(x))
(

1
y ′(x)

)
.

Substitution at x∗ yields the expression
that follows, by definition of y∗ and λ∗.

that

( 1 y ′(x∗) )D2
(x,y)L(x

∗,y∗, λ∗)

(
1

y ′(x∗)

)
< 0.

Obviously, this condition is satisfied if D2
(x,y)L(x

∗,y∗, λ∗) is negative definite, but this
would be overkill: notice that

( 1 y ′(x∗) ) ·Dg(x∗,y∗) = 0,

so it suffices that we guarantee that for every ∆ ∈ R2 \ {0} such that ∆ ·Dg(x∗,y∗) = 0
we have that ∆>D2

(x,y)L(x
∗,y∗, λ∗)∆ < 0.

So, in summary, we seem to have argued to following result:

Suppose that f,g ∈ C1. Then:
(1) x∗ ∈ D locally solves Problem (9.1), only if there exists λ∗ ∈ RJ such that
DL(x∗, λ∗) = 0.
(2) If f,g ∈ C2 and there exists λ∗ ∈ RJ such that (i) DL(x∗, λ∗) = 0, and (ii) that for
every ∆ ∈ R2 \ {0} such that ∆ ·Dg(x∗,y∗) = 0, we have that ∆>D2

(x,y)L(x
∗,y∗, λ∗)∆ <

0; then, x∗ ∈ D locally solves Problem (9.1).

But we still need to argue that we can indeed solve y as a function of x . Notice that
it has been crucial throughout our analysis that ∂yg(x∗,y∗) 6= 0. Of course, even if
the latter hadn’t been true, but ∂xg(x∗,y∗) 6= 0, our method would still have worked,
mutatis mutandis. So, what we actually require is that Dg(x∗,y∗) have rank 1, its
maximum possible. The obvious question is: is this a general result, or does it only
work in our simplified case?

To see that it is indeed a general result, we introduce without proof the following
important result:

Theorem 9.1.1 (The Implicit Function Theorem). Let D ⊆ RK+J and let g : D →
RJ ∈ C1. If (x∗,y∗) ∈ D is such that rank(Dyg(x∗,y∗)) = J, then there exist
ε, δ > 0 and γ : Bε(x

∗)→ Bδ(y
∗) ∈ C1 such that:

1. for all x ∈ Bε(x∗), (x,γ(x)) ∈ D;

2. for all x ∈ Bε(x∗), g(x,y) = g(x∗,y∗) for y ∈ Bδ(y∗) if, and only if y = γ(x);

3. for all x ∈ Bε(x∗), Dγ(x) = −Dyg(x,γ(x))−1Dxg(x,γ(x)).
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This important theorem allows us to express y as a function of x and gives us the
derivative of this function: exactly what we wanted! Of course, we need to satisfy the
hypotheses of the theorem if we are to invoke it. In particular, the condition on the
rank is known as “constraint qualification” and is crucial for the Lagrangean method
to work (albeit it is oftentimes forgotten!). So, finally, the following result is true:

Theorem 9.1.2 (Lagrange). Let f : D → R and g : D → RJ be of class C1, with
J 6 K. Let x∗ ∈ D be such that rank(Dg(x∗)) = J. Then,

1. If x∗ locally solves Problem (9.1), then there exists λ∗ ∈ RJ such that DL(x∗, λ∗) =
0.

2. If there exists λ∗ ∈ RJ such that (i) DL(x∗, λ∗) = 0 and (ii) for every ∆ ∈
RK \ {0} such that Dg(x∗)∆ = 0, it is true that ∆>D2

x,xL(x
∗, λ∗)∆ < 0; then, x∗

locally solves Problem (9.1).

9.2 Inequality constraints

9.2.1 Linear programming

Let A be an m× n matrix, and let b ∈ Rm and c ∈ Rn.4 Consider the following 4 We will follow the convention that
all vectors are taken as columns.problem:

vp = max
x∈Rn

c · x : Ax 6 b.

This is one of several equivalent representations of linear programs: problems where
a linear function is to be optimized over a polyhedron. There are several interesting
results and well understood algorithms that solve this kind of problem. Here, we focus
on two specific results.

Define the following “dual” problem,

vd = min
y∈Rm+

b · y : y>A = c>.

From now on, refer to the original problem as the “primal.” Notice for any (x,y) ∈
Rn ×Rm+ such that Ax 6 b and y>A = c>, it is true that c · x = y>Ax 6 y>b, so it
follows that, if they exist, vp 6 vd.

That is, for any y > 0 such that y>A = c, the number b · y is an upper bound
to the solution of the primal problem; the dual problem finds the lowest such upper
bound. Crucially, if both problems are feasible, then they both have solution and their
solutions are the same!

Theorem 9.2.1 (The Duality Theorem). Suppose that there exists (x̄, ȳ) ∈ Rn×Rm+

such that Ax̄ 6 b and ȳ>A = c>. Then, vp = vd ∈ R.

Proof. It suffices to show that there exists (x,y) ∈ Rn ×Rm+ such that Ax 6 b,
y>A = c> and c · x > b · y. By the Theorem of the Alternative (or Farkas’s lemma),
it suffices to show that for any (α,β,µ) ∈ Rm+ ×R+ ×Rn, if α>A− βc> = 0 and
βb> + µ>A> = 0, then α>b + µ>c > 0. Now, to see that this true, consider the
following two cases:
(1) If β > 0, then

α>b =
β

β
b>α = −

1
β
µ>A>α = −

1
β
αA>µ = −

1
β
βc>µ.
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(2) If β = 0, then
α>b > α>Ax̄ = 0 = µ>A>ȳ = µ>c.

Theorem 9.2.2 (Complementary Slackness). Suppose that (x̄, ȳ) ∈ Rn×Rm+ satisfies
Ax̄ 6 b and ȳ>A = c>. The following statements are equivalent:

1. x̄ solves the primal problem and ȳ solves the dual problem;

2. ȳ>(b−Ax̄) = 0.

Proof. To see that 1 implies 2, notice that, by the Duality Theorem, c · x̄ = b · ȳ, while
ȳ>A = c>.

To see that 2 implies 1, it suffices to show that c · x̄ = b · ȳ. But this is immediate,
since ȳ>A = c>, if ȳ>(b−Ax̄) = 0.

9.2.2 Non-linear programming

As before, let f : D → R ∈ C1 and f : D → RJ ∈ C1. Now suppose that we have to
solve the problem

max
x∈D

f(x) : g(x) > 0. (9.2)

Again, the “usual” method says that one should try to find (x∗, λ∗) ∈ D×RJ+ such
that DxL(x∗, λ∗) = 0, g(x∗) > 0 and λ∗ · g(x∗) = 0. It is as though there is a theorem
that states:

If x∗ ∈ D locally solves Problem (9.2), then there exists λ∗ ∈ RJ+ such that DxL(x∗, λ∗) =
0, g(x∗) > 0 and λ∗ · g(x∗) = 0.

Now, even though in this statement we are recognizing the local character and (only)
the necessity of the result, we still have to worry about constraint qualification. To see
that this is the case, consider the following example:

Example 9.2.1. Consider the problem

max
(x,y)∈R2

−((x− 3)2 + y2) : 0 6 y 6 −(x− 1)3.

The Lagrangean of this problem can be written as

L(x,y, λ1, λ2) = −(x− 3)2 − y2 + λ1(−(x− 1)3 − y) + λ2y.

Notice that, although (1, 0) solves the problem, there is no solution (x∗, λ∗1, λ
∗
2) to

the following system:
(i) −2(x∗ − 3) + 3λ∗1(x

∗ − 1)2 = 0 and −2y∗ − λ∗1 + λ
∗
2 = 0;

(ii) λ∗1 > 0 and λ∗2 > 0;
(iii) −(x∗ − 1)3 − y∗ > 0 and y∗ > 0; and
(iv) λ∗1(−(x∗ − 1)3 − y∗) = 0 and λ∗2y

∗ = 0.

If the first order conditions were necessary even without the constraint qualification
(i.e. if the statement were true) the system of equations in the previous example would
necessarily have to have a solution. The point of the example is just that the theorem
requires the constraint qualification condition: the following theorem is true.
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Theorem 9.2.3 (Kühn - Tucker). Let f : D → R ∈ C1 and g : D → RJ ∈ C1. Let
x∗ ∈ D be such that g(x∗) > 0. Define the set I = {j ∈ {1, . . . , J} | gj(x

∗) = 0},
let I = #I, and suppose that rank(Dg̃(x∗)) = I for g̃ : D → RI defined by g̃(x) =
(gj(x))j∈I. Then,

1. If x∗ is a local solution to Problem (9.2), then there exists λ∗ ∈ RJ+ such that
DxL(x

∗, λ∗) = 0, g(x∗) > 0 and λ∗ · g(x∗) = 0.

2. Suppose that f,g ∈ C2 and there exists λ∗ ∈ RJ+ such that:
(i) DxL(x∗, λ∗) = 0,
(ii) g(x∗) > 0,
(iii) λ∗ · g(x∗) = 0, and
(iv) ∆>D2

x,xL(x
∗, λ∗)∆ < 0 for all ∆ ∈ RI \ {0} such that ∆ ·Dg̃(x∗) = 0.

Then, x∗ is a local solution to Problem (9.2).

As before, it must be noticed that there is a gap between necessity and sufficiency,
and that the theorem only gives local solutions. For the former problem, there is no
solution. For the latter, one can study concavity of the objective function and convexity
of the feasible set. Importantly, notice that with inequality constraint the sign of λ does
matter: this is because of the geometry of the theorem: a local maximizer is attained
when the feasible directions, as determined by the gradients of the binding constraints is
exactly opposite to the desired direction, as determined by the gradient of the objective
function. Obviously, locally only the binding constraints matter, which explains why
the constraint qualification looks more complicated here than with equality constraints.
Finally, it is crucial to notice that the process does not amount to maximizing L: in
general, L does not have a maximum; what one finds is a saddle point of L.

The proof of the following result is left as an exercise

Theorem 9.2.4. Suppose that f : RK → R and g : RK → RJ are both of class C1.

1. Suppose that the set F = {x ∈ Rn | g(x) > 0} is compact, and that for every
x ∈ F, if we denote I(x) = {j ∈ {1, . . . , J} | gj(x) = 0} and I(x) = #I(x), we have
that

rank([Dgj(x)]j∈I(x)) = I(x).

If there exists x∗ ∈ F such that
(i) there is some λ∗ ∈ Rm+ for which DxL(x∗, λ∗) = 0 and λ∗ · g∗(x∗) = 0; and
(ii) for every x ∈ F \ {x∗} and all λ ∈ Rm+ , the equality DxL(x, λ) = 0 implies
that λ · g(x) > 0;
then x∗ uniquely solves Problem (9.2).

2. Suppose that there exists no pair (x, λ) for which DxL(x, λ) = 0, λ > 0, g(x) > 0,
and λ · g(x) = 0. Then, x∗ locally solves Problem (9.2) only if

rank((Dgi(x))i∈I) < I,

where I = {i ∈ {1, . . . , J} | gi(x∗) = 0} and I = #I.

9.3 Parametric programming

We now study how the solution of a problem depends on the parameters that
define the problem.
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9.3.1 Continuity

Let Ω ⊆ RM be nonempty, and let D : Ω � RK be a correspondence from Ω into
RK: for every ω ∈ Ω, this correspondence assigns a subset D(ω) ⊆ RK.

Suppose that D : Ω� RK is nonempty- and compact-valued, in the sense that for
all ω ∈ Ω, the set D(ω) is non-empty and compact.

Definition 9.3.1. Correspondence D is upper hemicontinuous at ω ∈ Ω if for every
pair of sequences (ωn)

∞
n=1 in RM, and (xn)

∞
n=1 in RK, such that

(i) for all n ∈N, ωn ∈ Ω,
(ii) limn→∞ωn = ω and
(iii) for all n ∈N, xn ∈ D(ωn),
there exist a subsequence (xnm)

∞
m=1 of (xn)∞n=1 and a point x ∈ D(ω) such that

lim
k→∞ xnm = x.

The correspondence is upper hemicontinuous if it is upper hemicontinuous at every
ω ∈ Ω.

An upper hemicontinuous correspondence has the property that its graph is “closed”
at points where the correspondence explodes.5 5 More formally, what suffices for up-

per hemicontinuity is that the graph of
the correspondence be closed, and that
for all bounded B ⊆Ω, the set

∪ω∈BD(ω)

be bounded too.

Definition 9.3.2. Correspondence D is lower hemicontinuous at ω ∈ Ω if for every
sequence (ωn)

∞
n=1 in RM such that

(i) for all n ∈N, ωn ∈ Ω and
(ii) limn→∞ωn = ω,
and for every point x ∈ D(ω), there exists a sequence (xn)

∞
n=1 in RK such that

(iii) for all n ∈N, xn ∈ D(ωn), and
(iv) limn→∞ xn = x.
The correspondence is lower hemicontinuous if it is lower hemicontinuous at every
ω ∈ Ω.

A lower hemicontinuous correspondence has the property that its graph is “open”
at points where the correspondence explodes.

Definition 9.3.3. Correspondence D is continuous at ω ∈ Ω if it is upper and
lower hemicontinuous at ω. It is continuous if it is continuous at every ω ∈ Ω.

A continuous correspondence does not explode.

Theorem 9.3.1. If correspondence F : Ω � RK is singleton-valued6 and upper 6 That is, if for all ω ∈ Ω, one has
that D(ω) is a singleton set.or lower hemicontinuous, then the function f : Ω → RK, defined implicitly by

{f(ω)} = F(ω), is continuous.

Proof. The argument is left as an exercise.

In fact, the relationship between the concepts introduced in the previous theorem
is stronger: in the case of single valued correspondence, both types of hemicontinuity
are equivalent to continuity of the associated function (and equivalent to each other,
then).

The importance of the concept of continuity of correspondences is given by the
following result
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Theorem 9.3.2 (Theorem of the Maximum). Let function f : RK ×Ω → R be con-
tinuous and let correspondence D : Ω � RK be nonempty-, compact-valued and
continuous. The correspondence X : Ω� RK defined by

X(ω) = argmaxx∈D(ω)f(x,ω)

is upper hemicontinuous7 and the value function v : Ω→ R, defined by 7 And nonempty- and compact-
valued.

v(ω) = max
x∈D(ω)

f(x,ω),

is continuous.

Proof. Since D is nonempty- and compact-valued, and f is continuous (in x), Weier-
strass’s Theorem guarantees that X is non-empty valued and v is well defined. These
same assumptions imply that X is compact-valued.

To see that X is upper hemicontinuous, fix ω ∈ Ω and take sequences (ωn)
∞
n=1

and (xn)
∞
n=1 such that the three conditions in Definition 9.3.1 are satisfied. Since D

is upper hemicontinuous, there exists a subsequence (xnm)
∞
m=1 such that xnm → x,

for some x ∈ D(ω). Now, let x ′ ∈ D(ω). Since D is lower hemicontinuous at
ω, there exists a sequence (x ′m)∞m=1 such that x ′m ∈ D(ωnm), for all m ∈ N and
x ′m → x ′. By construction (property ii), we have that f(xnm ,ωnm) > f(x

′
m,ωnm).

Since ωnm → ω, xnm → x and x ′m → x ′, and since f is continuous,

f(x,ω) = lim
m→∞ f(xnm ,ωnm) > lim

m→∞ f(x ′m,ωnm) = f(x
′,ω).

Since the latter is true for all x ′ ∈ D(ω), we have that x ∈ X(ω).
Now, to see that v is continuous, fix ω ∈ Ω and suppose that v is not continuous at

ω. Then, for some ε > 0 we can construct a sequence (ωn)
∞
n=1 in Ω that converges

to ω, but such that |v(ωn) − v(ω)| > ε for all n ∈ N. Fix xn ∈ X(ωn) and x ∈
X(ω). Since X is upper hemicontinuous, we can find a subsequence (xnm)

∞
m=1 that

converges to x. It is immediate that (xnm ,ωnm) → (x,ω), but, by construction,
|f(xnm ,ωnm) − f(x,ω)| > ε for all m ∈N. This implies that f(xnm ,ωnm) 9 f(x,ω),
which is impossible since f is continuous.

9.4 Application: Continuity of the Marshallian demand

We now want to study whether the Marshallian demand of an individual is
continuous. By the Theorem of the Maximum, if the individual’s utility function is
continuous, all we need to show is that the budget correspondence is continuous as
well.

Theorem 9.4.1. The budget correspondence B� RL++ ×R+ � RL+ is continuous.

Proof. Fix (p,m) ∈ RL++ × R+ and a sequence (pn,mn)∞n=1, defined in RL++ ×
R+ and such that (pn,mn) → (p,m). Let (xn)

∞
n=1 be a sequence such that xn ∈

B(pn,mn) for all n ∈N.
For each l ∈ {1, . . . ,L}, since pl,n → pl ∈ R++, there is some p∗l ∈ R++ such that,

for all n ∈N, pl,n > p∗l . Denote p∗ = (p∗1, . . . ,p
∗
L). Sincemn → m, there existsm∗ ∈

R+ for whichmn 6 m∗, for all n ∈N. By construction, xn ∈ B(pn,mn) ⊆ B(p∗,m∗).
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By Theorem 2.6.5, there is a subsequence (xnk)
∞
k=1 of (xn)

∞
n=1 that converges to

some x ∈ RL+. By continuity of the inner product, pnk · xnk → p · x, while pnk ·
xnk 6 mnk → m implies that p · x 6 m, so that x ∈ B(p,m). This shows that B is
upper hemicontinuous at (p,m). Since (p,m) was arbitrary, it follows that B is upper
hemicontinuous.

Now, let (pn,mn)∞n=1 be a sequence in RL++ ×R+ such that (pn,mn) → (p,m),
and let x ∈ B(p,m). If m = 0, it is trivial that B is lower hemicontinuous at (p,m),
so let us assume that m > 0. Define, for all l ∈ {1, . . . ,L},

sl =
plxl
m

and, for all n ∈N,
xl,n =

slmn

pl,n

and xn = (x1,n, . . . , xL,n). Clearly xn ∈ B(pn,mn), and, each l ∈ {1, . . . ,L},

xl,n =
plxl
m

mn

pl,n
→ xl,

so xn → x. This shows that B is upper hemicontinuous at (p,m), and, hence that it
is upper hemicontinuous, since (p,m) was arbitrary.

Corollary 9.4.1. If u : RL+ → R is a continuous utility function, then its Mar-
shallian demand correspondence is upper hemicontinuous, and its indirect utility
function is continuous. If, in addition, u is strictly quasiconcave, then its Mar-
shallian demand is a continuous function.

Corollary 9.4.2. If % is a complete, strictly monotone, convex and continuous
pre-order, then its Marshallian demand correspondence is upper hemicontinuous.
If, in addition, % is strictly convex, then its Marshallian demand is a continuous
function.

9.5 Differentiability

Suppose now that both sets D ⊆ RK and Ω ⊆ RM, are open and finite-dimensional.
Suppose that f : D ×Ω → R and g : D ×Ω → RJ, and consider the following
(simplified) parametric problem: given ω ∈ Ω, let

v(ω) = max
x∈D

f(x,ω) : g(x,ω) = 0.

Suppose that the differentiability and second-order conditions are given, so that a point
x∗ solves this maximization problem if, and only if, there exists a λ∗ ∈ RJ such that
DL(x∗, λ∗,ω) = 0.

Suppose furthermore that we can define functions x : Ω→ D and λ : Ω→ RJ, given
by the solution of the problem and the associated multiplier, for every ω. Then, it
follows directly from the Implicit Function Theorem that if, for a given ω̄ ∈ Ω,

rank

(
0J×J Dxg(x

∗, ω̄)

Dxg(x
∗, ω̄)> D2

x,xL(x
∗, λ∗, ω̄)

)
= J+K,

then there exists some ε > 0 such that on Bε(ω̄) the functions x and λ are differentiable
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and(
Dλ(ω̄)

Dx(ω̄)

)
= −

(
0J×J Dxg(x

∗, ω̄)

Dxg(x
∗, ω̄)> D2

x,xL(x
∗, λ∗, ω̄)

)−1(
Dωg(x(ω̄), ω̄)

D2
ω,xL(x(ω̄), λ(ω), ω̄)

)
.

It is then immediate that v is differentiable at ω̄ and

Dv(ω̄) = Dxf(x(ω̄), ω̄)Dx(ω̄) +Dω(ω̄).

A simpler method, however, is given by the following theorem

Theorem 9.5.1 (The Envelope Theorem). If, under the assumptions of this subsec-
tion, v is continuously differentiable at ω̄, then Dv(ω̄) = DωL(x(ω̄), λ(ω̄), ω̄).

Proof. One just needs to use the Chain Rule: by assumption,

Dxf(x(ω),ω) +Dxg(x(ω),ω)>λ(ω) = 0,

whereas g(x(ω),ω) = 0, so

Dxg(x(ω),ω)Dx(ω) +Dωg(x(ω),ω) = 0;

meanwhile,

Dv(ω) = Dx(ω)>Dxf(x(ω),ω) +Dωf(x(ω),ω)

= −Dx(ω)>Dxg(x(ω),ω)>λ(ω) +Dωf(x(ω),ω)

and

DωL(x(ω), λ(ω),ω) = Dωf(x(ω),ω) +Dωg(x(ω),ω)>λ(ω)

= Dωf(x(ω),ω) −Dx(ω)>Dxg(x(ω),ω)>λ(ω),

which gives the result.

Exercise 9.5.1. Let f : RK → R, g : RK → RJ ∈ C2, with J 6 K ∈N. Suppose that
for all ω ∈ Rm, the problem

max f(x) : g(x) = ω

has a solution, which is characterized by the first order conditions of the La-
grangean defined by L(x, λ,ω) = f(x) + λ · (ω− g(x)). Suppose furthermore that
these conditions define differentiable functions x : RJ → RK and λ : RJ → RJ.
Prove that Dv(ω) = λ(ω), for all ω, where v : RJ → R is the value function of
the problem.



10
Fixed Point Theory

Two key results in mathematical economics are presented next.

10.1 Kakutani’s fixed-point theorem

Theorem 10.1.1 (Kakutani). Let ∆ ⊆ RL and let Γ : ∆� ∆ be a non-empty-valued
correspondence. If ∆ is compact and convex, and Γ is convex-valued and upper
hemicontinuous, then there exists δ ∈ ∆ such that δ ∈ Γ(δ).

When Γ is single-valued (i.e. a function), the result is referred to as Brower’s fixed-
point theorem and is easy enough to visualize in the case L = 1.

A complete proof of Kakutani’s theorem is far from simple and we will not attempt
it here. To see the general strategy of such proof, here we will see its simplest version,
in R. That is, we will argue the following result:

Let Γ : [0, 1] → [0, 1] be nonempty-, convex- and compact-valued, and upper hemicon-
tinuous. There exists δ ∈ [0, 1] such that δ ∈ Γ(δ).

Proof of Theorem 10.1.1, in R: The following algorithm constructs a sequence in
[0, 1]4.

0 Let n = 0, δ0 = 0, δ0 = 1, γ0 ∈ Γ(0) and γ0 ∈ Γ(1).

1 Let n = n+ 1. If

∃δ ∈ Γ
(
δ n−1 + δn−1

2

)
: δ >

δ n−1 + δn−1
2

,

go to 2; else, go to 3.

2 Define

δn =
δ n−1 + δn−1

2
, δn = δn−1, γn = δ and γn = γn−1

and go to 1.

3 Find

δ ∈ Γ
(
δ n−1 + δn−1

2

)
: δ >

δ n−1 + δn−1
2

,

and define

δn = δ n−1, δn =
δ n−1 + δn−1

2
, γ
n
= γ

n−1 and γn = δ.
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Go to 1.

This algorithm constructs a sequence (δn,γn,γn, δn)
∞
n=1, in [0, 1]4, that satisfies

the following properties, for all n ∈N:

(i) δn 6 γn and γn 6 δn;

(ii) 0 6 γ
n
< γn 6 1; and

(iii) γn − γ
n
6 2−n.

Since this sequence is bounded, by Theorem 2.6.5 it possesses a convergent subse-
quence. Since Γ is upper hemicontinuous, we can pick this subsequence,

(δ nm ,γ nm ,γnm , δnm)
∞
m=1,

such that
(δ nm ,γ nm ,γnm , δnm)→ (δ∗,γ∗,γ∗, δ∗)

with γ∗ ∈ Γ(δ∗) and γ∗ ∈ Γ(δ∗). By condition (i), δ∗ 6 γ∗ and γ∗ 6 δ∗. By conditions
(ii) and (iii), |δnm − δ nm | → 0, so δ∗ = δ

∗. Let δ = δ∗, and note that γ∗ 6 δ 6 γ∗.
Since γ∗ ∈ Γ(δ∗) = Γ(δ) and γ∗ ∈ Γ(δ∗) = Γ(δ) and Γ is convex-valued, we have that
δ ∈ Γ(δ).1 Q.E.D. 1 Recall that Γ(δ∗) ⊆ R.

10.1.1 Application: Existence of Nash Equilibrium

Suppose that there is a finite set of players (society), each of which we denote
by i ∈ {1, . . . , I}. Suppose that player i can choose an action from a set of alternatives
Σi, which is assumed to be nonempty. Denote by si the action taken by i; the full
profile of actions chosen by the society, s = (s1, . . . , sI), determines the outcome of
the game, and in fact, we identify the profile of actions with the outcome of the game.
Players (may) care about the outcome of the game: i derives utility (receives payoff)
ui(s1, . . . , sI) from the outcome of the game. These elements describe a simultaneous-
move game: formally, a simultaneous-move game is

({1, . . . , I}, (Σi,ui : ×Ij=1Σ
j → R)Ii=1).

In the present setting, where players play only once and all actions have to be chosen
simultaneously, we will also refer to actions as strategies, and will refer to each set Σi

as the set of strategies of player i. For simplicity of notation, denote by Σ¬i the set
of strategies of all players other than i, and use s¬i to denote its generic element.2

2 That is, Σ¬i = ×j6=iΣj and s¬i =

(s1, . . . ,si−1,si+1, . . . ,sI).

Also, when necessary, use ui(si, s¬i) to denote ui((s1, . . . , si−1, si, si+1, . . . , sI). The
thought process in individual i’s mind will be the following: if the other players are
playing s¬i, the best i can choose for herself is si that makes ui(si, s¬i) as high as
possible.3 Formally, for player i, si is a best response to s¬i if it solves the problem

3 This behavior is known as best re-
sponse: given everything that is not
(directly) under her control, an indi-
vidual’s choice should be optimal for
herself, according to her own prefer-
ences: she should not regret the choice
that she makes, at the time he is mak-
ing it.

maxŝ∈Σi u
i(ŝ, s¬i).

A profile of strategies is a Nash equilibrium if each player is satisfied with her choice,
given what her opponents are choosing.4 That is, profile of strategies (s1, . . . , sI) ∈

4 One may argue that best-response
behavior is a very weak principle: why
would players not question the motives
and choices of their opponents? How-
ever, notice that if one finds a profile
of choices where every player is best-
responding to the rest of the actions,
the criticism is less powerful! This
leads to the basic concept of equilib-
rium in games.

×Ii=1Σ
i is a Nash equilibrium in pure strategies if, for each i, si is a best response

to s¬i.
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Intuitively, a Nash equilibrium is an outcome of a game in which no individual
player would find that it is for her own benefit to deviate unilaterally from what
is being played. We do not know whether multilateral deviations would benefit some
players, nor do say how the game is played when there are multiple outcomes that have
the equilibrium property. But if players are going to choose their actions individually,
outcomes that are not Nash equilibrium do not result appealing as predictions of the
theory: at an outcome like that, at least one player would regret her choice.5 As in other 5 Of course, non-equilibrium outcomes

can be played. But we do not want
to construct a theory in which predict
that an individually rational decision
maker will choose suboptimal choices.
Or, at least, that is not the route that
classical game theory has followed.

concepts of economic equilibrium, Nash equilibrium arises as a solution that appeals
in the sense that it seems “sustainable,” although we do not specify a “dynamics” for
which equilibrium corresponds to a “resting point.” It is also important to notice
that Nash equilibrium, or best-response behavior for that matter, does not give an
algorithm to determine how a player chooses her play (or how we should choose ours
when we play games): if a player knew what her opponents are choosing, then we would
have such an algorithm; but remember that this is a simultaneous-move situation, so
we cannot interpret equilibrium as an algorithm for choice! What the definition of
equilibrium does is simply to distinguish situations where, under the best-response
principle, individuals do not regret the choices they make at the time when they are
making them, form situations in which at least one of them does.

Suppose that players consider the possibility of choosing their actions randomly.
Then, best-response behavior can be applied by considering players that are more
sophisticated in their thought processes: given that her opponents are choosing their
actions randomly (with certain probabilities), how should a player randomize between
her possible actions so as to maximize her expected payoff?6 6 We will accept that expected pay-

offs correctly represent the individual’s
preferences, although this too can be
questionable.

Let ∆i be the set of probability distributions over Σi. For simplicity of notation,
denote by ∆¬i = ×j6=i∆j, the set of probability distributions of all players other than
i, and use p¬i to denote its generic element. If the other players are using p¬i to
choose their plays, the best i can choose for herself is pi that makes Epi [Ep¬i [ui(s)]]

as high as possible.7 Thus, a profile of probability distributions (p1, . . . ,pI) ∈ ×Ii=1∆
i 7 When all strategy sets are finite,

Epi [Ep¬i [ui(s)]] equals, simply,

∑
s

I∏
j=1

pj(sj)ui(s).

is a Nash equilibrium in mixed strategies if for each i, pi solves the problem

max
p̂∈∆i

Ep̂[Ep¬i [ui(s)]].

A game will be said to be finite if it has finitely many players and each of them
has only finitely many strategies that she can play. Obviously, PRS is finite, and it
turns out that finite games often have no Nash equilibrium in pure strategies. As in
PRS however, the use of mixed strategies always gives us an equilibrium in this type
of game.

Theorem 10.1.2 (Nash). Any finite game has a Nash equilibrium in mixed strate-
gies.

Proof. Let ∆ = ×Ii=1∆
i, and define the correspondence Bi : ∆¬i � ∆i, by letting

Bi(p¬i) = argmaxp̂∈∆iEp̂[Ep¬i [ui(s)]].

This correspondence is known as the best-response correspondence of player i. Since
∆i is compact and the expectation operator is continuous in the probabilities, the
correspondence is non-empty- and compact-valued. Since the expectation operator
is linear in the probabilities and set ∆i is convex, it is also convex-valued. By the
Theorem of the Maximum, the correspondence is also upper hemi-continuous.
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Now, define correspondence B : ∆ � ∆ by B(p) = ×iBi(p¬i). This correspon-
dence inherits all the properties of the best-response correspondences and, hence, by
Kakutani’s Fixed-Point Theorem, there exists some p ∈ ∆ such that B(p) 3 p. By
construction, p is a Nash equilibrium in mixed strategies.

Luckily there also exist general existence results for Nash equilibrium in pure strate-
gies. The most classical one is presented next, without a proof (but it should not be
hard for you to give one, if you understood the argument just given for Nash’s theorem).

Theorem 10.1.3 (Glicksberg). Suppose that for every player i, the set of strategies
is a compact and convex subset of some finite-dimensional Euclidean space. If for
every player one has that the payoff function ui is concave in si and continuous,
then the game has a Nash equilibrium in pure strategies.

10.1.2 Application: Existence of Competitive Equilibrium

Assume a society populated by a finite number of individuals, which we denote
by i = 1, . . . , I. In this society, we will consider the case in which only exchange of
commodities takes place.

Consumer i is modeled by what she likes and what she has. For simplicity of expres-
sion, we will assume here that our consumers have preferences that are representable
by utility functions ui : RL+ → R.8 In general equilibrium, we want to endogenize the

8 The standard properties of prefer-
ences may be invoked. Here, we will
interchangeably say that the individual
has convex preferences or that her util-
ity function is quasiconcave.

individuals’ nominal income, so we will assume that they are endowed with a bundle,
wi ∈ RL+, of commodities.9

9 Notice that, by the latter assump-
tion, we are introducing one institution
in our society: private property.

An exchange economy is defined by a society, and by the full description of its
members,

{{1, . . . , I}, (ui,wi)Ii=1}.

Let p = (p1, . . . ,pL) ∈ RL denote commodity prices, and use xi to denote individual
i’s consumption plan.10

10 We want to study situations where
agents trade voluntarily and where
they think that their actions do not im-
pact the aggregate conditions at which
trade takes place. We, then, are
adding a second institution, competi-
tive markets, which are exchange facil-
ities where an anonymous price is an-
nounced for each commodity, denoted
pl, and where all traders can trade at
that given price.

In an exchange economy with competitive markets, consumers take all prices as
independent of their demands, and the only constraint that individual i recognizes is
that she cannot spend more than her nominal wealth, which is the nominal value of
her endowment.

Definition. In an exchange economy {{1, . . . , I}, (ui,wi)Ii=1}, a competitive equilib-
rium is a pair consisting of a vector of prices and a profile of consumption plans,
(p, (xi)Ii=1), such that: (i) for each consumer i, bundle xi solves the problem
maxx ui(x) : p · x 6 p ·wi; and (ii) all markets clear:

∑I
i=1 x

i =
∑I
i=1w

i.

The definition of equilibrium takes preferences and endowments as given fundamen-
tals, and determines values for all endogenous variables of the problem; in the case of
an exchange economy, the endogenous variables are all the prices and the consumption
decisions of all individuals. Equilibrium is then the requirement that all these vari-
ables be feasible and that no agent regret the decision she is making at the time she is
making it. 11

11 Importantly, notice that in the inter-
pretation of the definition of competi-
tive equilibrium, there are endogenous
variables that are not decided by any
one particular agent: while prices are
endogenous to the whole economy, each
decision-maker thinks that she cannot
affect them. Notice also that the defini-
tion of equilibrium does not say what
occurs in the economy when it is not
in equilibrium. Finally, notice the as-
sumptions implicit in the definition: (i)
it is assumed, as an institution, the ex-
istence of complete competitive mar-
kets; (ii) it is assumed, as a rule of be-
havior, that all agents are price takers;
(iii) each individual’s behavior affects
her well-being only; and (iv) no unit of
a commodity can be consumed by more
than one consumer. Many results cru-
cially depend on these assumptions.

The following property is well known, and simplifies the treatment of competitive
equilibrium.
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Proposition (Walras’s law). Fix an exchange economy {(ui,wi)Ii=1} in which all
consumers have locally nonsatiated preferences, and at least one of them has
strongly monotone preferences. Suppose that (p, (xi)Ii=1) satisfies that:

1. for each individual i, xi solves maxx ui(x) : p · x 6 p ·wi;

2. for all l ∈ {1, ...,L− 1},
∑I
i=1 x

i
l =
∑I
i=1w

i
l.

Then, all prices are positive, p� 0, and the following are all competitive equilib-
ria:

(p, (xi)Ii=1),
(

1
p1
p, (xi)Ii=1

)
,
(

1
||p||

p, (xi)Ii=1

)
and

(
1∑
l pl

p, (xi)Ii=1

)
.

Proof. Since one individual’s preferences are strictly monotone, it follows from con-
dition 1 that allprices must be strictly positive. Since all consumers are locally non-
satiated, condition 1 also implies, by the version of Walras’s covered in Consumer’s
theory, that

∑I
i=1 p · (xi−wi) = 0. But then, by condition 2, pL

∑I
i=1(x

i
L−w

i
L) = 0,

which implies that
∑I
i=1(x

i
L −w

i
L) = 0, since pL > 0. This means that (p, (xi)Ii=1)

is a competitive equilibrium. That the other pairs are equilibria too follows from
homogeneity of degree zero of Marshallian demand.

The result says that when looking for general equilibria of an economy with strongly
monotone consumers, it suffices to guarantee that all of the markets but one clear.
This says that the L× L system of market-clearing equations is underdetermined (as a
function of prices), and is in fact an L× (L− 1) system. So, one can drop one variable
by letting, for instance, p1 = 1, and solving a (L− 1)× (L− 1) system.

Theorem. Suppose that
∑I
i=1w

i � 0 and that each ui is continuous, strongly
quasiconcave and strictly monotone. Then, there exists a competitive equilibrium.

Denote by ∆ the (L− 1)-dimensional unit simplex, and let ∆o = ∆∩RL++ and ∆∂ =

∆\∆o. (These sets are known as the relative interior and the boundary of the simplex.)
The aggregate excess demand function over strictly positive prices, Z : ∆o → RL, is
defined by

Z(p) =
∑
i

[xi(p) −wi],

where
xi(p) = argmaxxu

i(x) : p · x 6 p ·wi.

You can take for granted that, under the assumptions of the theorem, Z is continuous
and bounded below; satisfies that, for all p ∈ ∆o, p ·Z(p) = 0; and is such that

max
l=1,...,L

{Zl(pn)}→∞
for all sequence (pn)

∞
n=1 in ∆o such that pn → p ∈ ∆∂.

Define correspondence Γ : ∆� ∆ as follows:

Γ(p) =

{
argmaxγ∈∆Z(p) · γ, if p ∈ ∆o;
{γ ∈ ∆ | p · γ = 0}, if p ∈ ∆∂.

The exercises that follow will provide a proof of the Theorem:

Exercise 10.1.1. Argue that Γ is nonempty-, compact- and convex-valued.
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Exercise 10.1.2. Argue that if p ∈ ∆o and Z(p) 6= (0, . . . , 0) then Γ(p) ⊆ ∆∂.

Exercise 10.1.3. Argue that if p ∈ ∆∂, then p /∈ Γ(p).

Exercise 10.1.4. Argue that Γ is upper hemicontinuous at all p ∈ ∆o.

Exercise 10.1.5. Fix p ∈ ∆∂, (pn)∞n=1 in ∆ such that pn → p, and (γn)
∞
n=1 in ∆

such that γn ∈ Γ(pn) for each n.

1. Argue that there exist a subsequence of (γn)∞n=1, (γnm)
∞
m=1, and a γ ∈ ∆ such

that γnm → γ.

2. Fix the subsequence constructed in 1, and suppose that (pnm)
∞
m=1 has no sub-

sequences in ∆o. Argue that p · γ = 0.

3. Fix the subsequence constructed in 1, and suppose that (pnm)
∞
m=1 has a sub-

sequence in ∆o, (pnmk )
∞
k=1. Argue that there exists k∗ ∈ N such that, for all

k > k∗ and all l ∈ {1, . . . ,L} such that pl > 0,

Zl(pnmk ) < max
l ′∈{1,...,L}

{Zl ′(pnmk )}.

Conclude that, hence, p · γ = 0.

4. Argue that Γ is upper hemicontinuous at all p ∈ ∆∂.

Exercise 10.1.6. Argue that there exists some p ∈ ∆ such that p ∈ Γ(p), and
conclude that, hence, Z(p) = 0. Argue that this proves the theorem.

10.2 Banach’s Fixed-Point Theorem

Definition 10.2.1. A function f : RK → RK is said to be a contraction if there
exists a number α < 1 such that, for all x, x ′ ∈ RK,

‖f(x) − f(x ′)‖ 6 α‖x− x ′‖.

When that is the case, we define

inf{α ∈ R | ∀x, x ′ ∈ RK‖f(x) − f(x ′)‖ 6 α‖x− x ′‖}

as the Lipschitz modulus of f.

Theorem 10.2.1 (Banach). If f : RK → RK is a contraction, there exists an x̄ ∈ RK

for which f(x̄) = x̄. Moreover, such x̄ is unique and, for every x ∈ RK, the sequence
defined by

x1 = x and ∀n > 2, xn = f(xn−1) (10.1)

converges to x̄.

Proof. Let α be the modulus of contraction f. For the sake of clarity, we divide the
argument in three steps.

Step 1: existence of some x̄. Fix any x ∈ RK, and let the sequence (xn)
∞
n=1 be

defined recursively by Eq. (10.1). By construction,

‖x3 − x2‖ = ‖f(x2) − f(x1)‖ 6 α‖x2 − x1‖,
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and, thus,

‖x4 − x3‖ = ‖f(x3) − f(x2)‖ 6 α‖x3 − x2‖ 6 α2‖x2 − x1‖,

and so on, so that, in general,

‖xn+1 − xn‖ 6 αn−1‖x2 − x1‖.

Since α 6 1, it follows that (xn)
∞
n=1 is Cauchy and, hence, it converges to some

x̄ ∈ RK.
Step 2: x̄ is indeed a fixed point. By construction, for any ε > 0, we can find

n∗ ∈N such that for all n > n∗, ‖xn − x̄‖ < ε/2. Notice, then, that for all ε > 0,

‖f(x̄) − x̄‖ 6 ‖f(x̄) − xn∗+1‖+ ‖xn∗+1 − x̄‖
= ‖f(x̄) − f(xn∗)‖+ ‖xn∗+1 − x̄‖
6 α‖x̄− xn∗‖+ ‖xn∗+1 − x̄‖

<
1+α
2

ε

< ε,

where first inequality follows from triangle inequality, the second one by the definition
of α, and the last one from the fact that α < 1, since f is a contraction.

Now, this is possible only if ‖f(x̄) − x̄‖ = 0, which means that f(x̄) = x̄.
Step 3: uniqueness of fixed points. Now, let x ′ ∈ RK be such that f(x ′) = x ′.

Then,
0 6 ‖x̄− x ′‖ = ‖f(x̄) − f(x ′)‖ 6 α‖x̄− x ′‖.

Since α < 1, this is possible only if ‖x̄− x ′‖ = 0, which means that x̄ = x ′.

It is important to notice that, since the proof took the point x arbitrarily, we indeed
showed that for every x ∈ RK, the sequence defined by Eq. (10.1) converges to x̄.





11
Riemann Integration

In the first part of this chapter, we assume that a,b ∈ R, a < b. As before, we
assume that X ⊆ R.

11.1 The Riemann integral

There are different, but equivalent, ways to define the Riemann integral. We now
introduce the simplest (although not necessarily the best) one.

A function s : [a,b]→ R is said to be a step function if there exist a monotonically
increasing finite sequence (x1,...,xn∗) such that x1 > a , xn∗ = b, and a finite sequence
(s1,...,sn∗) satisfying that for all n ∈ {1, 2, . . . ,n∗} it is true that for all x ∈ (xn−1, xn),
s(x) = sn, where we define x0 = a.

Example 11.1.1. Consider s : [−2, 2]→ R defined by

s(x) =


−1 if − 2 6 x < 0
0 if x = 0
1 if 0 < x 6 2

It is easy the see that s is a step function: use {x1, x2} = {0, 2} and {s1, s2} = {−1, 1},
and let x0 = −2; then, we have that for all x ∈ (x0, x1) = (−2, 0), s(x) = −1 = s1
and for all x ∈ (x1, x2) = (0, 2), s(x) = 1 = s2.

It is important to notice, both in the definition and in the example, that the values
of s(a) and s(b) do not matter. Similarly, the value of s at any point of discontinuity is
irrelevant (e.g. s(0) in the example,) but there can be only finitely many such points.
It should also be clear that any step function on [a,b] is bounded, because it takes at
most (2n∗ + 1) (a finite number) different values.

Definition 11.1.1. Given a step function s : [a,b] → R, we define the integral of
s from a to b by ∫b

a
s(x) dx =

n∗∑
n=1

sn(xn − xn−1),

where x0 = a, (x1,...,xn∗) is a monotonically increasing finite sequence such that
x1 > x0, xn∗ = b, and (s1,...,sn∗) is a finite sequence satisfying that for all n ∈
{1, 2, . . . ,n∗} it is true that for all x ∈ (xn−1, xn), s(x) = sn.
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Notice that the integral of a step function on [a,b] is always a real number. Also, it
should be clear that the integral is unique, so that no matter what particular sequences
one uses to find it, the summation is always the same.

Example 11.1.2. For s defined as in Example 11.1.1, we have∫2
−2
s(x) dx = −1(0− (−2)) + 1(2− 0) = 0

Again, notice that the integral is independent of s(a) and s(b), and of the value of
s at any point of discontinuity (e.g. 0 in our example).

Definition 11.1.2. Let f : [a,b] → R be a bounded function. If there exists a
unique I ∈ R such that ∫b

a
s(x) dx 6 I 6

∫b
a
t(x) dx

for every pair of step functions s : [a,b] → R and t : [a,b] → R such that s(x) 6
f(x) 6 t(x) for all x ∈ [a,b], then f is said to be integrable (on [a,b]), and I is said
to be the integral of f from a to b, which we denote by∫b

a
f(x) dx = I.

It is important to notice that I is required by the definition to be finite and unique.
Let f : [a,b]→ R be integrable. Then, we define∫a

b
f(x) dx = −

∫b
a
f(x) dx

and
∫a
a f(x) dx = 0. Also, the following definition is (has to be) given for formal

completeness: let c,d ∈ [a,b], c 6 d; we define the integral of f from c to d as∫d
c
f(x) dx =

∫d
c
f̃(x) dx

where f̃ : [c,d]→ R is defined by f̃(x) = f(x), for all x ∈ [c,d].

11.2 Properties of the Riemann integral

The following results list (some) important properties of the Riemann integral. We
state them without proof.

Theorem 11.2.1. Suppose that the functions f : [a,b] → R and g : [a,b] → R are
integrable and α,β ∈ R. Then, (αf+βg) : [a,b]→ R is integrable and∫b

a
(αf+βg)(x) dx = α

∫b
a
f(x) dx+β

∫b
a
g(x) dx

Theorem 11.2.2. Suppose that f : [a,b]→ R is integrable and c ∈ [a,b]. Then,∫b
a
f(x) dx =

∫c
a
f(x) dx+

∫b
c
f(x) dx

Theorem 11.2.3. Suppose that the functions f : [a,b] → R and g : [a,b] → R are
integrable and, for all x ∈ [a,b], f(x) 6 g(x). Then,

∫b
a f(x) dx 6

∫b
a g(x) dx.
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Additionally, if f : [a,b]→ R is integrable, α ∈ R and β ∈ R \ {0}, then∫b
a
f(x) dx =

∫b+α
a+α

f(x−α) dx

and ∫b
a
f(x) dx =

1
β

∫βb
βa
f(
x

β
) dx

Theorem 11.2.4. If f : [a,b] → R is either monotonic or continuous, then it is
integrable.

It must be pointed out that the fact that the domain of f is assumed bounded in
the previous theorem is crucial.

11.3 The Fundamental Theorems of Calculus

Following are the two most important results relating integral and differential calculus.
(Their proofs use the Mean Value Theorem that we learned in Chapter 5.4.)

Theorem 11.3.1 (First Fundamental Theorem of Calculus). If f : [a,b] → R is dif-
ferentiable, and f ′ : [a,b]→ R is integrable, then

∫b
a f
′(x) dx = f(b) − f(a).

Theorem 11.3.2 (Second Fundamental Theorem of Calculus). Suppose that f : [a,b]→
R is integrable. Define F : [a,b]→ R, for all x ∈ [a,b], by F(x) =

∫x
a f(t) dt. If f is

continuous at x̄ ∈ X, then F ′(x̄) = f(x̄).

11.4 Antiderivatives (indefinite integrals)

The results in last section show the tight relation that exists between differential and
integral calculus. We now show how we can take advantage of such relation in order
to find the integral

Definition 11.4.1. A function F : X→ R is said to be an antiderivative of f : X→ R

if for all x ∈ X, F ′(x) = f(x).

Suppose that F : X→ R is an antiderivative of f : X→ R. Then, we will also write
F =
∫
f(x) dx. Notice that antiderivatives are not unique.

The following results (which establish the most useful properties of antiderivatives,)
come straightforwardly from Theorems 5.1.2, 5.1.3 and 5.2.1:

∫
(αf)(x) dx = α

∫
f(x) dx

for any α ∈ R;
∫
(f+ g)(x) dx =

∫
f(x) dx+

∫
g(x) dx;∫

xn dx =
xn+1

n
+K, if n 6= −1;

∫
1
x
dx = ln(x) +K;∫

ex dx = ex +K;
∫
ef(x)f ′(x) dx = ef(x) +K;∫

(f(x))nf ′(x) dx =
1

n+ 1
(f(x))n+1 +K,

if n 6= −1; and, ∫
1
f(x)

f ′(x) dx = ln(f(x)) +K.
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Here, K ∈ R is arbitrary. Notice that the first two results assume that antiderivatives
for f and g exist (on the domain in which the functions are defined).

The importance of these rules is that, together with the Fundamentals Theorems of
Calculus, they make the computation of Riemann integrals a process in which one just
has to reverse the one of differentiation. In particular, if we can find the antiderivative
of an integrable function (with bounded domain), we can use the First Fundamental
Theorem of Calculus in the computation of the Riemann integral.

Example 11.4.1. Suppose that f : R→ R is defined by f(x) = x3− 3x, for all x ∈ R.
Now, we can use the first, second and third rules that we just introduced, to show
that ∫

f(x) dx =
1
4
x4 −

3
2
x2 +K

where K ∈ R. Now, let F : [a,b]→ R be defined as for all x ∈ [a,b],

F(x) =
1
4
x4 −

3
2
x2

Clearly, F ∈ C∞ so that F is differentiable and F ′ is integrable (by Theorem 11.2.4).
By the First Fundamental Theorem of Calculus, it follows that

∫b
a F
′(x) dx =

F(b) − F(a), which means that∫b
a
(x3 − 3x) dx = (

1
4
b4 −

3
2
b2) − (

1
4
a4 −

3
2
a2) = (

1
4
x4 −

3
2
x2)ba

where the last inequality is just introducing some new notation. Alternative no-
tation would be:

(
1
4
x4 −

3
2
x2)
∣∣b
a

For example, ∫2
1
(x3 − 3x) dx = (

1
4
x4 −

3
2
x2)21 = −

3
4
.

Example 11.4.2. Suppose that we are interested in
∫
e−

x2
2 x dx. By our first rule,∫

e−
x2
2 x dx = −

∫
e−

x2
2 (−x) dx.

Now, let f(x) = −x
2

2 , so that f ′(x) = −x and∫
e−

x2
2 x dx = −

∫
ef(x)f ′(x) dx = −ef(x) +K = −e−

x2
2 +K,

using the sixth rule. As before, by the First Fundamental Theorem, for all a ∈ R∫a
−a
e−

x2
2 x dx = (−e−

x2
2 +K)a−a = 0.

11.5 Integration by parts

Suppose that we have two functions u : X → R and v : X → R, both of which are
differentiable. We know from Chapter 5 that

(u.v) ′(x) = u(x)v ′(x) + v(x)u ′(x)
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so that
u(x)v ′(x) = (u.v) ′(x) − v(x)u ′(x)

Therefore, by the rules that we introduced in the last section∫
u(x)v ′(x) dx =

∫
[(u.v) ′(x) − v(x)u ′(x)] dx

=

∫
(u.v) ′(x) dx−

∫
v(x)u ′(x) dx

= (u.v)(x) −
∫
v(x)u ′(x) dx

= u(x).v(x) −
∫
v(x)u ′(x) dx

Example 11.5.1. Suppose we want to find
∫
exx dx. Then, let v ′(x) = ex and

u(x) = x. Clearly, v(x) = ex and u ′(x) = 1. Then, we have∫
exx dx =

∫
u(x)v ′(x) dx

= u(x).v(x) −
∫
v(x)u′(x) dx

= exx−

∫
ex dx

= exx− ex

Therefore, by the First Fundamental Theorem of Calculus,
∫1
0 e
xx dx(exx− ex)10 =

1.

11.6 Improper integrals

So far, we have restricted our definition of Riemann Integral of the function f to the
case in which for a,b ∈ R, the function f is defined on [a,b] and is bounded. It is
convenient, however, to generalize the definition of the integral.

Suppose initially that a ∈ R and b ∈ R ∪ {∞}, b > a, and consider the function
f : [a,b)arrowR. Then, if for all d ∈ [a,b), the function is integrable when its domain
is restricted to [a,d], then, we define∫b

a
f(x) dx = lim

d→b

∫d
a
f(x) dx

provided that the limit exists.
Similarly, suppose now that a ∈ R ∪ {−∞} and b ∈ R, a < b, and consider the

function f : (a,b]arrowR. Then, if for all d ∈ (a,b], the function is integrable when
its domain is restricted to [d,b], then, we define∫b

a
f(x) dx = lim

d→a

∫b
d
f(x) dx

provided that the limit exists.
Finally, if we have a ∈ R∪ {−∞} and b ∈ R∪ {∞}, b > a, and consider the function

f : (a,b)arrowR. Then, if for all c,d ∈ (a,b), c < d, the function is integrable when
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its domain is restricted to [c,d], then, we define∫b
a
f(x) dx =

∫γ
a
f(x) dx+

∫b
γ
f(x) dx

for (any) γ ∈ (a,b), provided that both integrals and its sum exist (one should be
particularly worried about the result ∞+ (−∞), which does not exist).

Example 11.6.1. Recall Example 11.5.1. It follows that∫∞
0
exx dx = lim

d→∞(exx− ex)d0 = lim
d→∞(ed(d− 1)) + 1 =∞.

Exercise 11.6.1. (From Apostol, Calculus:) For a ∈ R, b ∈ R++, compute
the following integrals:

∫a
0 (1+ x+ x

2) dx,
∫2a
0 (1+ x+ x2) dx,

∫2a
−1(1+ x+ x

2) dx,∫a
−2 x

2(1+ x2) dx,
∫a2
a (1+ x2)2 dx,

∫b
1 (1+ x

1/2) dx, and
∫b2
b (x1/4 + x1/2) dx.

Exercise 11.6.2. (From Apostol, Calculus:) Show that:∫√
1− x2 dx = x

√
1− x2 +

∫
x2√
1− x2

dx

Exercise 11.6.3. Recall Example 11.4.2. Show that∫∞
−∞ e−

x2
2 x dx = 0

Exercise 11.6.4. Recall Example 11.4.1. Show that
∫∞
−∞(x3 − 3x) dx does not

exist.

11.7 Integration in higher-dimensional spaces

Recall that one of the goals of this notes was to introduce concepts in such a way
that generalizing to multiple dimensions was relatively simple. Surprisingly, one of the
easiest concepts to generalize is the one of Riemann integral.

From now on, we maintain the assumption that a,b, c,d ∈ R, a < b and c < d.
A function s : [a,b]× [c,d] → R is a step function if there exist finite monotonically
increasing sequences (xn)n

∗
n=1 and (ym)m

∗
m=1 and a finite double array ((sn,m)n

∗
n=1)

m∗
m=1

such that x1 > a, xn∗ = b, y1 > c, ym∗ = d and that for all n ∈ {1, . . . ,n∗}, for all
m ∈ {1, . . . ,m∗} and for all (x,y) ∈ (xn−1, xn)× (ym−1,ym),1 s(x,y) = sn,m, where 1 This is where notation exhibits a

conflict: the left-hand side of the ex-
pression is an ordered pair, whereas
each one of the terms in the Cartesian
product on the right-hand side is an
open interval. Had we used ]a,b[ for
open intervals, the conflict would not
have arisen, but this would be nonstan-
dard.

x0 = a and y0 = c.
Notice that this is a straightforward generalization of definition in the one-dimensional

case, with the sole exception that step functions need no longer be bounded (why?).

Example 11.7.1. Consider s : [−2, 2]× [0, 1]→ R, defined by:

s(x,y) =



−1, if − 2 6 x < 0;
y, if x = 0;
1, if 0 < x < 1 and 0 < y 6 0.5;
−1, if 0 < x < 1 and 0.5 < y 6 1;
−2, if 1 6 x 6 2 and 0 < y < 0.5;
2, if 1 6 x 6 2 and 0.5 6 y 6 1;

To see that s is step, define {xn}
3
n=1 = {0, 1, 2}, {ym}2m=1 = {0.5, 1} and define
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{{sn,m}3n=1}
2
m=1 by s1,1 = −1, s1,2 = −1, s2,1 = 1, s2,2 = −1, s3,1 = −2, and

s3,2 = 2.

Notice that the definition of s(x,y) when x = 0 does not matter. If we had defined
for all y ∈ [0, 1], s(0,y) = 0 the same definitions would imply that s is step. Moreover,
these definitions would still work if we defined s(0, 0) = 0 and for all y ∈ (0, 1],
s(0,y) = ln(y), but in this case s would not be bounded!

From now, we will denote Q = [a,b]× [c,d]. Notice that Q is a closed cube. Again,
a straightforward generalization is the following:

Definition 11.7.1. Given a step function s : Q → R, we define the integral of s
on Q by: ∫

Q
s(x,y) dx dy =

m∗∑
m=1

n∗∑
n=1

sn,m(xn − xn−1)(ym − ym−1)

where x0 = a, y0 = c, (xn)
n∗
n=1 and (ym)m

∗
m=1 are two finite monotonically in-

creasing sequences and ((sn,m)n
∗
n=1)

m∗
m=1 is a finite double array such that x1 > a,

xn∗ = b, y1 > c, ym∗ = d and that for all n ∈ {1, . . . ,n∗}, for all m ∈ {1, . . . ,m∗}
and for all (x,y) ∈ (xn−1, xn)× (ym−1,ym), s(x,y) = sn,m.

Example 11.7.2. For s defined as in Example 11.7.1, Q = [−2, 2]× [0, 1] and∫
Q
s(x,y) dx dy = (−1)(0− (−2)) + 1(1− 0)(0.5− 0)

+ (−2)(2− 1)(0.5− 0) + (−1)(0− (−2))(1− 0.5)

+ (−1)(1− 0)(1− 0.5) + 2(2− 1)(1− 0.5)

= −1+ 0.5− 1− 1− 0.5+ 1

= −2

Given definition 11.7.1, the following should appear natural as a generalization of
definition 11.1.2.

Definition 11.7.2. Let f : Q→ R be a bounded function. If there exists a unique
I ∈ R such that ∫

Q
s(x,y) dx dy 6 I 6

∫
Q
t(x,y) dx dy

for every pair of step functions s : Q → R and t : Q → R such that s(x,y) 6
f(x,y) 6 t(x,y) for all (x,y) ∈ Q, then f is said to be integrable, and I is said to
be the integral of f, which we denote by∫

Q
f(x,y) dx dy = I.

Notice that the definition requires I to exist and be unique. As before, the definition
results clumsy to compute the integral. However, the following theorem simplifies such
computation.

Theorem 11.7.1. Let f : Q → R be bounded and integrable. Suppose that for all
y ∈ [c,d], f(·,y) : [a,b] → R is integrable. Let A : [c,d] → R be defined by for all
y ∈ [c,d],

A(y) =

∫b
a
f(x,y) dx
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If A is integrable, then ∫
Q
f(x,y) dx dy =

∫d
c
A(y) dy

This result is normally expressed by saying that∫
Q
f(x,y) dx dy =

∫d
c

(∫b
a
f(x,y) dx

)
dy

or simply that ∫
Q
f(x,y) dx dy =

∫d
c

∫b
a
f(x,y) dx dy

Notice, however, that the latter is not a definition. It is the implication of a theorem
and applies only when its assumptions hold.

Exercise 11.7.1. The following proof of this theorem is relatively simple; try and
fill in the gaps.

Proof. Let s : Q → R and t : Q → R be step functions such that s(x,y) 6 f(x,y) 6
t(x,y) for all (x,y) ∈ Q. Fix y ∈ [c,d]. Clearly, s(·,y) and t(·,y) are also step
functions and for all x ∈ [a,b], s(x,y) 6 f(x,y) 6 t(x,y). Then, by definition (which
one?) ∫b

a
s(x,y) dx 6 A(y) 6

∫b
a
t(x,y) dx

Now, the left-most and right-most terms on the previous expression are themselves
step functions (of y on [c,d]; check this!), and by assumption the term in the middle
is integrable, so that, by Theorem 11.2.3,∫d

c

(∫b
a
s(x,y) dx

)
dy 6

∫d
c
A(y) dy 6

∫d
c

(∫b
a
t(x,y) dx

)
dy

and then, by properties of sums (justify this!),∫
Q
s(x,y) dx dy 6

∫d
c
A(y) dy 6

∫
Q
t(x,y) dx dy

and, finally, since s and t were arbitrary,∫
Q
f(x,y) dx dy =

∫d
c
A(y) dy.

Moreover, most usually one can use the following:

Theorem 11.7.2. If f : Q→ R is continuous, then it is integrable and∫
Q
f(x,y) dx dy =

∫d
c

(∫b
a
f(x,y) dx

)
dy =

∫b
a

(∫d
c
f(x,y) dy

)
dx.

Example 11.7.3. Let f : [0, 1]× [0, 1] → R be defined by f(x,y) = x3y− 3xy2. f is
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continuous and∫∫
[0,1]×[0,1]

f(x,y) dx dy =

∫1
0

[∫1
0
(x3y− 3xy2) dx

]
dy

=

∫1
0

(
1
4x

4y− 3
2x

2y2
)1
0
dy

=

∫1
0

(
1
4y−

3
2y

2
)

dy

=
(
1
8y

2 − 1
2y

3
)1
0

= −
3
8

Exercise 11.7.2. Show that for all a ∈ R+ and for all c,d ∈ R : c > d,∫∫
[−a,a]×[c,d]

e−
x2+y2

2 xy dx dy = 0

(This result will be extremely useful in statistics. Do you know why?)

So far we have restricted attention to functions defined on rectangles (or cubes) only.
This is clearly limited, but easy to overcome: let S ⊆ Q; if f : D→ R and S ⊆ D ⊆ Q,
define ∫

S
f(x,y) dx dy =

∫
Q
f̃(x,y) dx dy

where f̃ : Q→ R is defined by

f̃(x,y) =

{
f(x,y), if (x,y) ∈ S;

0, otherwise.

Exercise 11.7.3. Let Q = [0, 2]× [0, 2] and suppose that f : Q → R is defined by
for all (x,y) ∈ Q, f(x,y) = xy. Let

S = {(x,y) ∈ R | x2 6 y < x}

Show that S ⊆ Q. Show that S 6= ∅. Show that∫
S
f(x,y) dx dy =

1
24

Can you prove the last result using two different arguments (orders of integra-
tion)?





12
Probability

12.1 Measure Theory

Suppose that we have fixed a universe S. Denote by P(S) the set of all subsets of S
(that is, E ∈ P(S) if, and only if, E ⊆ S. Obviously, ∅ ∈ P(S) and S ∈ P(S). One
can also say that {∅,S} ⊆ P(S) and ∅ ⊆ P(S), but it would be a mistake to say that
S ⊆ P(S).

12.1.1 Algebras and σ-algebras:

Our problem now is to define, in a consistent manner, the size of (some of) the subsets
of S. The consistency of our definition will require some “structure” on the family of
subsets whose size we define: (i) we should be able to tell the size of the set with no
elements in it; (ii) if we are able to measure a set, we should also be able to measure
the rest of the universe; and (iii) if we are able to measure a series of sets, then we
should also be able to measure their union.

For this:

Definition 12.1.1. A family of subsets of S, Σ ⊆ P(S), is an algebra if:

1. it contains the empty set: ∅ ∈ Σ;

2. it is closed under complement: if A ∈ Σ, then S \A ∈ Σ; and

3. it is closed under finite union: if {An}Nn=1 ⊆ Σ is a finite set, then ∪Nn=1An ∈ Σ.

The following theorem is almost immediate from the definition.

Theorem 12.1.1. If Σ is an algebra, then:

1. it contains S: S ∈ Σ; and

2. it is closed under finite intersection: if {An}
N
n=1 ⊆ Σ is a finite set, then

∩Nn=1An ∈ Σ.

Proof. Left as an exercise. For the second part, recall De Morgan’s laws.

Theorem 12.1.2. P(S) is an algebra.

Proof. Left as an exercise.

Theorem 12.1.3. Let A 6= ∅ be a collection of Algebras. Σ = ∩Σ ′∈AΣ ′ is an
algebra.
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Proof. By construction, ∅ ∈ Σ ′, for all Σ ′ ∈ A, which implies that ∅ ∈ Σ. Suppose
now that A ∈ Σ. By definition, A ∈ Σ ′, for all Σ ′ ∈ A, which implies that S \A ∈ Σ ′,
for all of them, and hence that S \A ∈ Σ. Finally, let {An}

N
n=1 be a finite subset of

Σ. By construction, for all n and all Σ ′ ∈ A, we have that An ∈ Σ ′, which implies
that, also, An ∈ Σ ′; this means that ∪Nn=1An ∈ Σ ′, for all Σ ′ ∈ A, and hence that
∪Nn=1An ∈ Σ.

Exercise 12.1.1. Is it true that if A is a collection of algebras and A 6= ∅, then
Σ = ∪Σ ′∈AΣ ′ is an algebra?

Theorem 12.1.4. For every A ⊆ P(S), there is an algebra Σ ⊆ P(S) such that:

1. A ⊆ Σ; and

2. if Σ ′ ⊆ P(S) is an algebra and A ⊆ Σ ′, then Σ ⊆ Σ ′.

Proof. Consider the set

A = {Σ ′ ⊆ P(S) | Σ ′ is an algebra and A ⊆ Σ ′}.

Since P(S) ∈ A, it follows that A 6= ∅. Let Σ = ∩Σ ′∈AΣ ′. That Σ satisfies the
properties of the statement is immediate, while it follows from Theorem 12.1.3 that Σ
is an algebra.

The algebra Σ of the previous theorem is known as the algebra generated by A.
Notice that it is the algebra and not an algebra, because, so defined, Σ is unique.
Notice also that the conditions of the definition of algebra have the intuition we wanted.
For some purposes, however, we need to strengthen the third property:

Definition 12.1.2. A family of subsets of S, Σ ⊆ P(S), is a σ-algebra if:

1. it contains the empty set: ∅ ∈ Σ;

2. it is closed under complement: if A ∈ Σ, then S \A ∈ Σ; and

3. it is closed under countable union: if {An}∞n=1 ⊆ Σ, then ∪Nn=1An ∈ Σ.

The following theorems are left as exercises.

Theorem 12.1.5. P(S) is a σ-algebra.

Theorem 12.1.6. If Σ is a σ-algebra, then it is an algebra. When S is finite, if Σ
is an algebra, then it is a σ-algebra.

Theorem 12.1.7. If Σ is a σ-algebra, then:

1. it contains S: S ∈ Σ; and

2. it is closed under countable intersection: if {An}∞n=1 ⊆ Σ, then ∩Nn=1An ∈ Σ.

Theorem 12.1.8. Let S 6= ∅ be a collection of σ-algebras in S. Then, Σ = ∩Σ ′∈SΣ ′

is a σ-algebra.

Exercise 12.1.2. Is it true that if S is a collection of σ-algebras of S and S 6= ∅,
then Σ = ∪Σ ′∈SΣ ′ is a σ-algebra?

Theorem 12.1.9. For every A ⊆ P(S), there is a σ-algebra Σ ⊆ P(S) such that:
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1. A ⊆ Σ; and

2. if Σ ′ ⊆ P(S) is a σalgebra and A ⊆ Σ ′, then Σ ⊆ Σ ′.

The σ-algebra Σ of the previous theorem is the σ -algebra generated by A. Notice
that it is the, and not a, as in the case of algebras. The σ-algebra generated by A is
denoted by σ(A).

There is an argument, often used when dealing with σ-algebras, known as the good-
set principle:

Let Σ ⊆ P(S) be a σ-algebra for S. Think of Σ as the family of all the subsets of S
satisfying some property, or the “good” subsets of S. If A is an arbitrary family of good
subsets of S, then all the sets in σ(A) are good.

As a result, this is is trivial since, by hypothesis, the class of all good subsets is a
σ-algebra, so, by definition, σ(A) ⊆ Σ. But it is useful as it gives a correct intuition:
if the good subsets form a σ-algebra, then all the sets in the σ-algebra generated by a
family of good subsets are good as well.

Exercise 12.1.3. Let A be a class of subsets of S and A ⊆ S. For any E ⊆ P(S),
denote by E∩A the class {B∩A : B ∈ E}. Show that σA(A∩A) ⊆ σS(A)∩A, where
σA(A ∩A) denotes the σ-algebra generated by A ∩A relative to the universe A
and σS(A) is the σ-algebra generated for A relative to universe S.

The good-set principle allows us to show that the relationship between σA(A ∩A)
and σS(A)∩A is stronger that the previous exercise suggests: define

Σ = {E ∈ σS(A) | E∩A ∈ σA(A∩A)};

notice that Σ is a σ-algebra (for S) and satisfies that A ⊆ Σ; the latter implies that
σS(A) ⊆ Σ, so E ∈ σS(A) suffices to imply that E ∩ A ∈ σA(A ∩ A), and, then,
σS(A)∩A ⊆ σA(A∩A). Here, Σ is the family of all subsets of S. This result and the
exercise together imply that σA(A∩A) = σS(A)∩A.

12.1.2 Measure

If Σ is a σ-algebra for S, then (S,Σ) is said to be a measurable space. The idea here
is that Σ is the collection of subsets of S that we can “measure.” Now, what do we
understand by “measuring”? Intuitively, what we want to do is to associate each set to
a number. Of course, this assignment cannot be arbitrary: (i) sizes cannot be negative,
and we must consider the possibility of finding an “infinitely large” set; (ii) a set that
contains nothing must have zero measure; and (iii) if we take a collection of mutually
separated sets and we measure them, and we then measure their union, the sum of the
first measures must equal the last measure.

Formally, denote R∗ = R∪ {−∞,∞}, which is usually called the extended real line,
and let us take its positive orthant: R∗+ = R+ ∪ {∞}. Let Σ be an algebra for S and
let µ : Σ → R∗. Function µ is said to be finitely additive if for any finite collection
of mutually disjoint sets in Σ, {An}Nn=1, one has that µ(∪Nn=1An) =

∑N
n=1 µ(An). It

is said to be σ-additive if for any sequence {An}
∞
n=1 of mutually disjoint sets in Σ,

similarly, µ(∪∞n=1An) =
∑∞
n=1 µ(An).

Obviously, if µ is σ-additive, then it is also finitely additive. It is also immediate
that if S is finite, Σ is an algebra for S and µ : Σ → R∗is finitely additive, then (S,Σ)
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is a measurable space and µ is σ-additive. The proof of the following result is also left
as an exercise.

Theorem 12.1.10. Let Σ be an algebra for S and let µ : Σ→ R∗ be finitely additive.
If there is an A ∈ Σ such that µ(A) ∈ R, then µ(∅) = 0.

Exercise 12.1.4. Let S be an infinite, countable set. Define the following class of
subsets of S,

Σ = {A ⊆ S | either A or Ac is finite},

and define µ : Σ → {0, 1} by µ(A) = 0 if A is finite and µ(A) = 1 if Ac is finite.
Show that Σ is an algebra, and that µ is finitely additive but not σ-additive. Show
also that there exists a sequence (An)

∞
n=1 in Σ such that for every n ∈N one has

that µ(An) = 0, but µ(∪∞n=1An) = 1.1 1 Hint: find (An)
∞
n=1 such that each

An ⊆An+1 and ∪∞n=1An = S
It is obvious that the structure imposed when we consider arbitrary sequences is

more than when we consider finite sequences only. But, is the extra complication
necessary? To see that it is, consider the following experiment: a coin is tossed until
if comes head. Suppose that we want to measure the probability that the experiment
stops at an even toss. We need to consider countable but infinite sequences! Notice
that σ-additivity corresponds to the condition (iii) that we want to impose to our
measures.

Let (S,Σ) be a measurable space and let µ : Σ → R∗. Function µ is said to be a
measure if it is σ-additive and satisfies that µ(∅) = 0 and µ(A) ∈ R∗+ for all A ∈ Σ.
A measure space is (S,Σ,µ), where (S,Σ) is a measurable space and µ : Σ→ R∗+ is a
measure.

Again, the proofs of the following theorems are left as exercises.

Theorem 12.1.11. Let (S,Σ) be a measurable space and let µ,µ ′ : Σ → R∗+ be
measures. Then, µ∗ = µ+ µ ′ is a measure as well.

Theorem 12.1.12. Let (S,Σ) be a measurable space and fix A∗ ∈ Σ. Define µ∗ :

Σ→ R∗+ by µ∗(A) = µ(A∩A∗). Then, µ∗ is a measure.

Theorem 12.1.13. Let (S,Σ,µ) be a measure space. Then, for all A,A ′ ∈ Σ, if A ⊆
A ′, then µ(A) 6 µ(A ′) If, additionally, µ(A) ∈ R, then µ(A) = µ(A ′) − µ(A ′ \A).

Exercise 12.1.5. Prove the following results:

1. If X : S→ R is {∅,S}-measurable, then X(s) = X(s ′) for all s, s ′ ∈ S.

2. Any function X : S→ R is P(S)-measurable.

3. σ({S}) = {∅,S}.

4. If Σ is a σ-algebra, then σ(Σ) = Σ.

12.1.3 Example: Lebesgue measure

Let L be a finite number, and denote by I the class of subsets I of RL that can be
written as I =

∏L
l=1[al,bl], for (al,bl)Ll=1 such that al < bl. Define the function

v : I → R, by v(
∏L
l=1[al,bl]) =

∏L
l=1(bl − al). Define the outer measure function,

m : P(RL)→ R∗+, by

m(A) = inf

{ ∞∑
n=1

v(In) : In ∈ I and A ⊆ ∪∞n=1In

}
.
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Set A ⊆ RL is Lebesgue-measurable if for every ε > 0, there is an open set O ⊆ RL

such that m(O \A) < ε. Denote by LL ⊆ P(RL) the class of all Lebesgue-measurable
sets, and define the Lebesgue measure µ : LL → R∗+ by µ(A) = m(A).

Theorem 12.1.14. (RL,LL,µ) is a measure space.

Proof. This proof is beyond these notes. It can be found in standard textbooks on
the topic.

12.2 Probability

When the space S we are dealing with is the space of all possible results of an ex-
periment, the subsets we want to measure are called events and their measures are
understood as probabilities (which can be understood from either a frequentist or a
likelihood perspective). Now, if (S,Σ, p) is a measure space and p(S) = 1 , we say that
S is a sample space, that (S,Σ, p) is a probability space and that p is a probability
measure. So defined, the properties we impose for p to be considered a probability
measure are known as Kolmogorov’s axioms; their arguments are left as exercises.

Theorem 12.2.1. Let (S,Σ, p) be a probability space. For every E ∈ Σ, p(E) 6 1
and p(Ec) = 1− p(E), where Ec = S \ E.

Theorem 12.2.2. Let (S,Σ, p) be a probability space. For every E,E ′ ∈ Σ, p(E ′ ∩
Ec) = p(E ′) − p(E ′ ∩ E) and p(E∪ E ′) = p(E) + p(E ′) − p(E∩ E ′).

Exercise 12.2.1. A partition of S is a sequence (En)
N
n=1, with N finite or equal to

infinity, of pairwise disjoint sets in Σ such that ∪Nn=1En = S. With this definition,
prove the following generalization of Theorem 12.2.2: let (S,Σ, p) be a probability
space. Then, for every E ∈ Σ and every partition (En)

N
n=1 of S, one has that p(E) =∑N

n=1 p(E∩ En).

Theorem 12.2.3 (Bonferroni’s simple inequality). Let (S,Σ, p) be a probability space.
For every E,E ′ ∈ Σ, p(E∩ E ′) > p(E) + p(E ′) − 1.

Theorem 12.2.4 (Boole’s inequality). Let (S,Σ, p) be a probability space. For every
sequence (En)

∞
n=1 of sets in Σ, p(∪∞n=1En) 6

∑∞
n=1 p(En).

Theorem 12.2.5. Let (S,Σ, p) be a probability space, and let (En)∞n=1 be a sequence
in Σ such that En ⊆ En+1 for each n. Then, p(∪∞n=1En) = limn→∞ p(En).

Proof. Since p is σ-additive,

p(∪∞n=1En) = p(E1) +
∞∑
n=1

p(En+1 \ En)

= p(E1) +
∞∑
n=1

[p(En+1) − p(En)]

= p(E1) + lim
N→∞

N∑
n=1

[p(En+1) − p(En)]

= p(E1) + lim
N→∞[p(EN+1) − p(E1)]

= lim
N→∞p(EN).
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where the second step comes from Theorem 12.2.2 and the limit exists because it is a
monotone and bounded sequence.

Corollary 12.2.1. Let (S,Σ, p) be a probability space, and let (En)
∞
n=1 be a se-

quence in Σ such that En ⊇ En+1 for each n. Then, p(∩∞n=1En) = limn→∞ p(En).

12.3 Conditional probability

Henceforth, we maintain a probability space, (S,Σ, p), fixed. Let E∗ ∈ Σ be such that
p(E∗) > 0. The probability measure given (or conditional on) E∗ is defined by
p(· | E∗) : Σ→ [0, 1], with p(E | E∗) = p(E∩ E∗)/p(E∗).

Theorem 12.3.1. Let E,E ′ ∈ Σ and suppose that p(E) ∈ (0, 1). Then,

p(E ′) = p(E) · p(E ′ | E) + (1− p(E)) · p(E ′ | Ec).

Proof. By definition,

p(E)p(E ′ | E) + (1− p(E))p(E ′ | Ec) = p(E)
p(E ′ ∩ E)

p(E)
+ (1− p(E))

p(E ′ ∩ Ec)
p(Ec)

= p(E ′ ∩ E) + p(E ′ ∩ Ec)
= p(E ′),

because of σ-additivity.

The previous theorem, in fact, admits the following generalization, whose proof is
left as an exercise.

Theorem 12.3.2. Let (En)Nn=1 be a partition of S such that every p(En) > 0. Then,
for any E ′ ∈ Σ, one has that p(E ′) =

∑N
n=1 p(En)p(E

′ | En).

Theorem 12.3.3. Let (En)Nn=1 be a finite sequence of sets in Σ, such that p(∩
N−1
n=1 En) >

0. Then,

p(∩Nn=1En) = p(E1)p(E2 | E1)p(E3 | E1 ∩ E2) . . . p(EN | ∩N−1
n=1 En).

Proof. The proof is left as an exercise. (Hint: recall mathematical induction!)

12.4 Independence

A family of events E ⊆ Σ is pairwise independent if p(E∩E ′) = p(E)p(E ′) for any two
distinct E,E ′ ∈ E. It is independent if

p(∩Nn=1En) =

N∏
n=1

p(En)

for any finite subfamily {En}
N
n=1 of distinct sets in E.

Theorem 12.4.1. If E is independent, then it is pairwise independent.

Example 12.4.1. Notice that pairwise independence does not suffice for indepen-
dence. Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9} and Σ = P(S), and suppose that : p({s}) = 1/9
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for each s ∈ S. Let E1 = {1, 2, 7}, E2 = {3, 4, 7} and E3 = {5, 6, 7}, so

p(E1) = p(E2) = p(E3) =
1
3
.

Now, if i, j ∈ {1, 2, 3}, i 6= j, then p(Ei ∩ Ej) = 1/9 = p(Ei)p(Ej), but

p(E1 ∩ E2 ∩ E3) =
1
9
6= 1

27
= p(E1)p(E2)p(E3),

so this family is pairwise independent, but not independent.

Notice that ∩E∈EE = ∅ is neither necessary nor sufficient for independence.

Theorem 12.4.2. If {E,E ′} is independent, then so is {Ec,E ′}.

Proof. Just note that

p(Ec ∩ E ′) = p(E ′) − p(E∩ E ′)
= p(E ′) − p(E)p(E ′)

= (1− p(E))p(E ′)

= p(Ec)p(E ′),

by additivity and independence of {E,E ′}.

Corollary 12.4.1. If {E,E ′} is independent, then so is {Ec, (E ′)c}.

Theorem 12.4.3. Let E be independent. Then, E∗ = {E ∈ Σ : Ec ∈ E} is indepen-
dent.

The proofs of the last two results are left as exercises.

12.5 Random variables

Fix a measurable space (S,Σ). Function X : S → R is measurable with respect to Σ
(or Σ-measurable) if for every x ∈ R, one has that

{s ∈ S | X(s) 6 x} ∈ Σ.

Theorem 12.5.1. If X is Σ-measurable, then for all x ∈ R, the following sets lie
in Σ: {s ∈ S | X(s) > x}, {s ∈ S | X(s) < x}, {s ∈ S | X(s) > x} and {s ∈ S | X(s) = x}.

A random variable (in R) is a Σ-measurable function X : S → R. Let us now
endow the measurable space with a probability measure p and fix a random variable
X : S → R. The distribution function of X is FX : R → [0, 1], defined by FX(x) =

p({s ∈ S | X(s) 6 x}). (Note that FX is well defined because X is Σ-measurable.)

Theorem 12.5.2. Let FX be the distribution function of X. Then,

1. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1;

2. FX(x) > FX(x ′) whenever x > x ′;

3. FX is right continuous: for all x ∈ R, limh↓0 FX(x+ h) = FX(x).
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Proof. To see that limx→−∞ FX(x) = 0, consider

(En)
∞
n=1 = ({s ∈ S | X(s) 6 −n})∞n=1,

which is a sequence in Σ. Notice that each En ⊇ En+1, so

lim
x→−∞ FX(x) = lim

n→∞p(En)

= p(∩∞n=1En)

= p(∩∞n=1{s ∈ S | X(s) 6 −n})

= p({s ∈ S | ∀n ∈N,X(s) 6 −n})

= p(∅)

= 0,

where the second equality comes from Corollary 12.2.1.
Proving that limx→∞ FX(x) = 1 and that x > x ′ implies that FX(x) > FX(x ′) is left

as an exercise.
Now, fix x ∈ R and consider (En)∞n=1 = ({s ∈ S | X(s) 6 x+ 1/n})∞n=1. Notice that

each En ⊇ En+1, so

lim
h↓0

FX(x) = lim
n→∞p(En)

= p(∩∞n=1En)

= p(∩∞n=1{s ∈ S | X(s) 6 x+ 1/n})

= p({s ∈ S | ∀n ∈N,X(s) 6 x+ 1/n})

= p({s ∈ S | X(s) 6 x})

= FX(x),

where the second equality comes from Corollary 12.2.1.

Notice that it is not necessarily true that limh↑0 FX(x + h) = FX, so we can-
not guarantee that F is continuous. It is a good exercise to find a case in which
limh↑0 FX(x+ h) 6= FX. It is also important to see which step in the obvious proof of
left-continuity would fail:

{s ∈ S | ∃n ∈N : X(s) 6 x− 1/n} = {s ∈ S | X(s) < x},

which may be a proper subset of {s ∈ S | X(s) 6 x}.

Theorem 12.5.3. Let FX be the distribution function of X. Then,

1. p({s ∈ S | X(s) > x}) = 1− FX(x);

2. p({s ∈ S | x < X(s) 6 x ′}) = FX(x ′) − FX(x), whenever x 6 x ′;

3. p({s ∈ S | X(s) = x}) = FX(x) − limh↑0 FX(x+ h).

Proof. Part 1 is left as an exercise. To see the second part, notice that

p({s ∈ S | x < X(s) 6 x ′}) = p({s ∈ S | X(s) 6 x ′} \ {s ∈ S | X(s) 6 x})

= p({s ∈ S | X(s) 6 x ′}) − p({s ∈ S | X(s) 6 x})

= FX(x
′) − FX(x),
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where the second equality follows since x 6 x ′.
For the third part, consider (En)∞n=1 = ({s ∈ S | X(s) 6 x− 1/n})∞n=1 . Notice that

each En ⊆ En+1, so

lim
h↑0

FX(x+ h) = lim
n→∞p(En)

= p(∪∞n=1En)

= p(∪∞n=1{s ∈ S | X(s) 6 x− 1/n})

= p({s ∈ S | ∃n ∈N : X(s) 6 x− 1/n})

= p({s ∈ S | X(s) < x})

= p({s ∈ S | X(s) 6 x} \ {s ∈ S | X(s) = x})

= p({s ∈ S | X(s) 6 x}) − p({s ∈ S | X(s) = x})

= FX(x) − p({s ∈ S | X(s) = x}),

where the second equality comes from Theorem 12.2.5 and the seventh since {s ∈ S |

X(s) = x} ⊆ {s ∈ S | X(s) 6 x}.

The distribution function of a random variable characterizes (totally defines) its
associated probability measure.

Theorem 12.5.4. Let FX be the distribution function of X. Let g : R → R be
strictly increasing and define the random variable Y = g ◦ X : S → R. Denote by
FY the distribution function of Y. Then, for all y ∈ R, FY(y) = FX(g−1(y)).

Proof. Let y ∈ R, and note that

FY(y) = p({s ∈ S | Y(s) 6 y})

= p({s ∈ S | g(X(s)) 6 y})

= p({s ∈ S | X(s) 6 g−1(y)})

= FX(g
−1(y)),

where existence of g−1 and the third equality follow from the fact that g is strictly
increasing.

Random variable X is said to be continuous if FX is continuous. X is said to be
absolutely continuous if there exists an integrable function fX : R→ R+ such that

FX(x) =

∫x
−∞ fX(u) du

for all x ∈ R; in this case, fX is said to be a density function of X.

Example 12.5.1 (Standard Uniform Distribution). Suppose that the distribution
function of X is

FX(x) =


0, if x < 0;
x, if 0 6 x 6 1;
1, if x > 1.
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Notice that X is absolutely continuous, and one density function is

fX(x) =


0, if x < 0;
1, if 0 6 x 6 1;
0, if x > 1.

Theorem 12.5.5. Let FX be the distribution function of X. Let g : R → R be
strictly decreasing and define the random variable Y = g ◦ X : S → R. Denote by
FY the distribution function of Y. Then, for all y ∈ R,

FY(y) = 1− lim
h↑0

FX(g
−1(y) + h).

Moreover, if X is continuous, FY(y) = 1− FX(g−1(y)).

Corollary 12.5.1. Let fX be a density function of an absolutely continuous ran-
dom variable X. Let g : R→ R ∈ C1 be strictly increasing and define the random
variable Y = g ◦X : S→ R. Define fY : R→ R by

fY(y) =
fX(g

−1(y))

g ′(g−1(y))
.

Function fY is a density function for Y.

The proofs of the previous two results are left as exercises (Hint: in the latter case,
remember the Chain Rule and the Inverse Function Theorem).

Corollary 12.5.2. Let fX be a density function of an absolutely continuous ran-
dom variable X. Let g : R→ R ∈ C1 be strictly decreasing and define the random
variable Y = g ◦X : S→ R. Define fY : R→ R by

fY(y) = −
fX(g

−1(y))

g ′(g−1(y))
.

Function fY is a density function for Y.

The last two theorems and corollaries have been stated under assumptions stronger
than needed: it suffices that g be increasing in the closure of the set on which F is
increasing. The latter set is known as the support of X.

Exercise 12.5.1. Let FX be the distribution function of a continuous random vari-
able X . Let g : R→ R;g(x) = x2 and define the random variable Y = g◦X. Denote
by FY the distribution function of Y. Show that FY(y) = FX(

√
y) − FX(−

√
y), and

find a density function for Y, under the assumption that X is absolutely continu-
ous.

Exercise 12.5.2. Prove the following result: Let FX be the distribution function of
X. Suppose that FX is strictly increasing and define the random variable Y = FX ◦ X.
Y follows the Standard Uniform distribution (see Example 12.5.1).
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12.6 Moments

Henceforth, we assume that X is an absolutely continuous random variable, with density
fX. We assume that for every set D ⊆ R such that

∫
D fX(x) dx exists, it is true that

p({s ∈ S | X(s) ∈ D}) =

∫
D
fX(x) dx.

Moreover, for simplicity, the notation p(X ∈ D) will replace p({s ∈ S | X(s) ∈ D}) from
now on.

Let g : R → R and define the random variable g ◦ X : S → R. The expectation of
g ◦X is defined as

E(g(X)) =
∫∞
−∞ g(x)fX(x) dx,

if the integral exists. Whenever there is x∗ ∈ R such that
∫x∗
−∞ xf(x) dx = −∞ and∫∞

x∗ xf(x) dx =∞, we say that E(X) does not exist.2 Notice, in particular, that even if 2 The reason is simple:

E(X) =

∫∞
−∞ xf(x) dx

=

∫x∗
−∞ xf(x) dx

+

∫∞
x∗
xf(x) dx

= −∞+∞
will not be defined.

for every x∗ ∈ R+ one has that∫0
−x∗

|x|fX(x) dx =
∫x∗
0

|x|fX(x) dx ∈ R,

the integral E(X) may fail to exist. Notice also that if∫∞
−∞ |x|fX(x) dx ∈ R

then E(X) exists.

Theorem 12.6.1. Let g1,g2 : R→ R and a,b, c ∈ R. Then,

1. E(ag1(X) + bg2(X) + c) = aE(g1(X)) + bE(g2(X)) + c;

2. if g1(x) > 0 for all x ∈ R, then E(g1(X)) > 0;

3. if g1(x) > g2(x) for all x ∈ R, then E(g1(X)) > E(g2(X));

4. if a 6 g1(x) 6 b for all x ∈ R, then a 6 E(g1(x)) 6 b.

Theorem 12.6.2 (Chebychev’s Inequality). Let g : R→ R+ be such that E(g(X)) ∈
R. Then, for all r > 0,

p(g(X) > r) 6
E(g(X))

r
.

Proof. By definition,

E(g(X)) =

∫∞
−∞ g(x)fX(x) dx

>
∫
{x∈R|g(x)>r}

g(x)fX(x) dx

>
∫
{x∈R|g(x)>r}

rfX(x) dx

= r

∫
{x∈R|g(x)>r}

fX(x) dx

= rp(g(X) > r),

where the first inequality follows since, for all x ∈ R, g(x) > 0.
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Strictly speaking, in the previous proof we needed to argue that
∫
{x∈R|g(x)>r} fX(x) dx

exists. For this, it would suffice, for example, that g be continuous.
For a finite integer k, the k-th (non-central) moment of X is E(Xk), whenever it

exists. If E(X) exists in R, the k-th central moment of X is E((X−E(X))k), whenever
this integral exists. The first moment of X is its expectation or mean, and its second
central moment is its variance and is denoted V(X).

Corollary 12.6.1. Suppose that E(X) and V(X) > 0 exist. Then, for all t > 0 one
has that

p(|X−E(X)| > t
√
V(X)) 6

1
t2

.

Proof. Define g : R→ R+ by

g(x) =
(x−E(X))2

V(X)
.

By Chebychev’s inequality,

p(|X−E(X)| > t
√
V(X)) = p(

(X−E(X))2

V(X)
> t2)

6
1
t2

E(
(X−E(X))2

V(X)
)

=
1
t2

.

Exercise 12.6.1. Prove the following corollary: if E(X) and V(X) > 0 exist, then

p(|X−E(X)| < 2
√
V(X)) >

3
4
.

Notice the surprising implication of the previous exercise: the probability that the
realization of a random variable be at least two standard deviations from its mean is
at least 0.75, regardless of its distribution!

The Moment Generating Function of random variable X is MX : R→ R, defined
by MX(t) = E(etX), whenever the integral exists in R.

Theorem 12.6.3. For all k ∈N, if the derivative exists, M(k)
X (0) = E(Xk).

Proof. If the derivative exists,

M ′X(t0) =
∂E(etX)
∂t

(t0)

=
∂
∫∞
−∞ etxfX(x) dx

∂t
(t0)

=

∫∞
−∞

∂etxfX(x)

∂t
dx|t0

=

∫∞
−∞

∂etxfX(x)

∂t
dx|t0

=

∫∞
−∞ xet0xfX(x) dx.
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Now, suppose that k ∈N \ {1} and

M
(k−1)
X (t0) =

∫∞
−∞ xk−1et0xfX(x) dx.

Then,

M
(k)
X (t0) =

∂
∫∞
−∞ xk−1etxfX(x) dx

∂t
(t0)

=

∫∞
−∞

∂xk−1etxfX(x)

∂t
dx|t0

=

∫∞
−∞ xket0xfX(x) dx.

By mathematical induction, it follows that for all k ∈N,

M
(k)
X (t0) =

∫∞
−∞ xket0xfX(x) dx

and hence that
M

(k)
X (0) =

∫∞
−∞ xkfX(x) dx = E(Xk)

Notice that the previous theorem assumes that the derivative exists and replaces the
derivative of an integral by the integral of the derivative, which amounts to replacing
the limit of an integral by the integral of a limit. When X has bounded support, this
is just fine. In other cases, it suffices to show that there exist a random variable with
larger absolute value than the integrand and finite integral (in which case one can
appeal to a result known as the Lebesgue’s Dominated Convergence Theorem).

It is important to know that the moment generating function completely character-
izes a random variable’s distribution: if MX =MX ′ then FX = FX ′ .

Exercise 12.6.2 (Standard Uniform Distribution). Suppose that the distribution
function of X is the one introduced in Example 12.5.1. Find E(X) and MX. Show
that MX is not differentiable at 0.

Exercise 12.6.3 (Standard Normal distribution). Suppose that the density function
of X is given by

fX(x) =
1√
2π
e−

x2
2

for all x ∈ R. Show that for all t ∈ R one has that MX(t) = e
t2
2 , E(X) = 0 and

V(X) = 1.

Exercise 12.6.4 (Exponential distribution). Suppose that the density function of X
is given, for all x ∈ R, by

fX(x) =

{
0, if x < 0;
1
βe

− x
β , if x > 0,

where β > 0. Find E(X) and E(X2). Show that MX : (−∞, 1
β )→ R is

MX(t) =
1

1−βt
.
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Use MX to verify that M ′X(0) = E(X) and M ′′X(0) = E(X2).

12.7 Independence of random variables

Let (Xn)
N
n=1 be a finite sequence of random variables. The joint distribution of

(Xn)
N
n=1 is F(Xn)Nn=1 : RN → [0, 1], defined by

F(Xn)Nn=1
(x) = p({s ∈ S | (Xn(s))

N
n=1 6 x}).

Sequence (Xn)
N
n=1 is said to be absolutely continuous if there exists a function

f(Xn)Nn=1
: RN → R+ such that

F(Xn)Nn=1
(x) =

∫
v6x

f(Xn)Nn=1
(u) du

for all x ∈ RN; in this case, function f(Xn)Nn=1 is said to be a joint density function

for (Xn)Nn=1. If the sequence is absolutely continuous, and if each random variable Xn
has function fXn as a density function, then (Xn)

N
n=1 is said to be independent if3 3 This definition is not totally general

in that independence does not really re-
quire absolute continuity. For the pur-
poses of these notes, however, the defi-
nition suffices.

f(Xn)Nn=1
=

N∏
n=1

fXn .

A sequence (Xn)
∞
n=1 of random variables is said to be independent if every finite

sequence (Xnk)
K
k=1 constructed with elements of (Xn)∞n=1 is independent.

As before, if (Xn)Nn=1 is a sequence of absolutely continuous random variables and
g : RN → R, the expectation of g((Xn)Nn=1) is defined as

E(g((Xn)Nn=1)) =

∫∞
−∞ g(x)f(Xn)Nn=1(x) dx,

whenever the integral exists.

Theorem 12.7.1. Let (Xn)Nn=1 be a finite sequence of random variables. If (Xn)Nn=1
is independent, then

E(
N∏
n=1

Xn) =

N∏
n=1

E(Xn).
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Proof. By definition

E(
N∏
n=1

Xn) =

∫∞
−∞(

N∏
n=1

xn)f(Xn)Nn=1
(x) dx

=

∫∞
−∞(

N∏
n=1

xn)(

N∏
n=1

fXn(xn)) dx

=

∫∞
−∞
∫∞
−∞ . . .

∫∞
−∞

N∏
n=1

(xnfXn(xn)) dxN . . . dx2 dx1

=

∫∞
−∞
∫∞
−∞ . . .

N−1∏
n=1

(xnfXn(xn))(

∫∞
−∞ xNfXN(xN) dxN) . . . dx2 dx1

= E(XN)

∫∞
−∞
∫∞
−∞ . . .

N−1∏
n=1

(xnfXn(xn)) dxN−1 . . . dx2 dx1

...

= E(XN)E(XN−1) . . . E(X2)
∫∞
−∞ x1fX1(x1) dx1

= E(XN)E(XN−1) . . . E(X2)E(X1),

where the second inequality follows from independence.

Strictly speaking, the third equality in the last expression also has to be justified.
This would follow from a result known as Fubini’s theorem.

Exercise 12.7.1. Prove the following corollary: if (X1,X2) is independent, then

Cov(X1,X2) = E((X1 −E(X1))(X2 −E(X2))) = 0.

Perhaps because of the previous example, the idea of “no correlation” is oftentimes
confused with independence. One must be careful about this: is two random variables
are independent, then their correlation is zero; but the other causality is not true: if
X is normal, then X and X2 are uncorrelated, but they certainly are not independent.

12.8 Conditional Density and Expectation

For the purposes of this section, let (X1,X2) be a pair of random variables, assume that
it is absolutely continuous and denote by f(X1,X2) its density function. The marginal
density of X1 is the function defined by fX1(x1) =

∫∞
−∞ f(X1,X2)(x1, x2) dx2, for each

x1 ∈ R. If fX1(x1) > 0, the conditional density of X2 given that X1 = x1 is given by
the function

fX2|X1(x2 | x1) =
f(X1,X2)(x1, x2)

fX1(x1)
,

for each x2 ∈ R.
These definitions are useful when one needs to “decompose” the bivariate problem: if

one needs to know the probability that X1 ∈ [a,b], by definition one needs to compute∫b
a

∫∞
−∞ f(X1,X2)(x1, x2) dx2 dx1 =

∫b
a
fX1(x1) dx1;

and, if one knows that the realization of X1 is x1, and one needs to compute the prob-
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ability that X2 ∈ [a,b] given that knowledge, one simply needs to know
∫b
a fX2|X1(x2 |

x1) dx2, as the conditional density given that X1 = x1 re-normalizes the “prior” density
f(X1,X2) to take into account the knowledge on X1.

Theorem 12.8.1. If (X1,X2) is independent, then, for any x1 such that fX1(x1) > 0,
one has that fX2|X1(x2 | x1) = fX2(x2).

Let g : R→ R. The conditional expectation of g(X2) given that X1 = x1 is

E(g(X2) | X1 = x1) =

∫∞
−∞ g(x2)fX2|X1(x2 | x1) dx2.

Similarly, the conditional expectation of g(X2) given X1, which we denote E(g(X2) |
X1), is the random variable that takes value E(g(X2) | X1 = x1) in any state in which
X1 = x1; in particular, the probability that E(g(X2) | X1 = x1) ∈ [a,b] equals∫

{x1:E(g(X2)|X1=x1)∈[a,b]}
fX1(x1) dx1.

Theorem 12.8.2 (The Law of Iterated Expectations). Let (X1,X2) be a pair of ran-
dom variables. E(X2) = E(E(X2 | X1)).

Proof. By direct computation,

E(X2) =

∫ ∫
x2f(X1,X2)(x1, x2) dx2 dx1

=

∫
{x1|fX1(x1)}

(

∫
x2fX2|X1(x2 | x1) dx2)fX1(x1) dx1

=

∫
E(X2 | X1 = x1)fX1(x1) dx1

= E(E(X2 | X1)).

12.9 Convergence of random variables

There are several concepts of convergence for random variables. We consider three of
them: a sequence (Xn)

∞
n=1 of random variables

(a) converges in probability to the random variable X if for all ε > 0 one has that

lim
n→∞p(|Xn −X| < ε) = 1;

(b) it converges almost surely to the random variable X if p(limn→∞ Xn = X) = 1;
and
(c) it converges in distribution to the random variable X if at all x ∈ R at which FX
is continuous, one has that limn→∞ FXn(x) = FX(x), where each FXn is the distribution
function of Xn and FX is the one of X.

For notational conciseness, we denote the three types of convergence by Xn
p→ X,

Xn
c.s.→ X and Xn

d→ X, respectively. It is important to understand the relationship
between these three concepts, which we now do, albeit in a somewhat informal manner.

We first introduce, without proof, two very intuitive results (formally, they follow
from Lebesgue’s dominated convergence theorem):
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(Fact 1:) If Xn
c.s.→ X and g : R→ R is bounded, then E(Xn)→ E(X).

(Fact 2:) If Xn
p→ X and g : R→ R is bounded, then E(Xn)→ E(X).

With these two results, we can argue that (1) if Xn
c.s.→ X then Xn

p→ X; and (2)
if Xn

p→ X then Xn
d→ X. For simplicity, let us consider only the case in which all

Xn and X are continuous. For statement (1), fix ε > 0 and define I>ε : R → {0, 1} by
saying

I>ε(x) =

{
1, if x > ε;
0, if x < ε.

Since Xn
c.s.→ X, it follows that I>ε(|Xn −X|)

c.s.→ 0, which guarantees, by the first fact,
that E(I>ε(|Xn − X|)) → 0, or, equivalently, that p(|Xn − X| > ε) → 0, which yields
the result.

For the second statement, fix x∗ ∈ R, a point of continuity of FX, and define,
similarly to the previous argument, the function I6x∗ : R→ {0, 1} by

I6x∗(x) =

{
1, if x 6 x∗;
0, if x > x∗.

By the second fact, we have that E(I6x∗(Xn)) → E(I6x∗(X)), which is equivalent to
saying that p(Xn 6 x∗)→ p(X 6 x∗).

Now, neither one of the opposite causalities is true. When the limit variable is con-
stant, convergence in distribution implies convergence in probability, as the following
theorem states.

Theorem 12.9.1. Let (Xn)∞n=1 be a sequence of continuous random variables and

let x∗ ∈ R be such that, Xn
d→ x∗. Then, Xn

p→ x∗.4 4 One must understant what the state-
ment Xn

d→ x∗ means: what it says is
that Xn

d→ X where X : S→ R is the
random variable constant in x∗.

Proof. Denote by F the distribution function of the random variable constant in x∗.
Fix ε > 0. By definition,

p(|Xn − x∗| > ε) = p(Xn 6 x∗ − ε) + p(Xn > x∗ + ε)

= FXn(x
∗ − ε) + 1− lim

h↑0
FXn(x

∗ + ε+ h)

= FXn(x
∗ − ε) + 1− FXn(x

∗ + ε)

→ F(x∗ − ε) + 1− F(x∗ + ε)

= 0+ 1− 1

= 0,

where the third equality follows because FXn is continuous and convergent because
x∗ + ε is a point of continuity of F, since

F(x) =

{
1, if x > x∗;
0, if x < x∗.

However, if the limit variable is not a constant, convergence in distribution does not
ensure convergence in probability and, in any case, convergence in probability does not
ensure almost sure convergence, as shown in the following example.

Example 12.9.1. Suppose S = [0, 1], endowed with the Uniform measure. For
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every interval [a,b], define I[a,b] : R→ {0, 1} by

I[a,b](s) =

{
1, if s ∈ [a,b];
0, if s /∈ [a,b].

Consider the sequence (Xn)
∞
n=1 of random variables, defined as follows:

X1(s) = s+ I[0,1](s)

X2(s) = s+ I[0,1/2](s)

X3(s) = s+ I[1/2,1](s)

X4(s) = s+ I[0,1/3](s)

X5(s) = s+ I[1/3,2/3](s)

X6(s) = s+ I[2/3,1](s)

X7(s) = s+ I[0,1/4](s)

...

and define X by X(s) = s. We shall show that Xn
p→ X, but it is not true that

Xn
c.s.→ X:

(1) To see that Xn
p→ X, notice that the interval in which Xn 6= X gets smaller and

smaller as n grows and, since S is endowed with the uniform measure, if ε < 1,
then p(|Xn −X| > ε)→ 0.
(2) Now, to see that it is not true that Xn

c.s.→ X, simply notice that there is no
s ∈ [0, 1] for which Xn(s) → s = X(s), since, in fact, for no s ∈ [0, 1] is Xn(s)
convergent, so, p(limn→∞ Xn = X) = 0.

Example 12.9.2. Suppose a sequence (Xn : S → R++)
∞
n=1 such that Xn

p→ x∗ ∈
R++. Let ε ∈ (0,

√
x∗] and γ ∈ (0, x∗] be such that ε =

√
x∗ −

√
x∗ − γ. Notice that

|x− x∗| < γ ⇔ x∗ − γ < x < x∗ + γ

⇔
√
x∗ − γ <

√
x <

√
x∗ + γ

⇔
√
x∗ − γ−

√
x∗ <

√
x−
√
x∗ <

√
x∗ + γ−

√
x∗

⇒ |
√
x−
√
x∗| <

√
x∗ −

√
x∗ − γ = ε,

which implies that

p(|
√
Xn −

√
x∗| < ε) > p(|Xn − x∗| < γ)→ 1.

Now, if ε >
√
x∗, then, p(|

√
Xn −

√
x∗| < ε) > p(|

√
Xn −

√
x∗| <

√
x∗) → 1, which

implies that
√
Xn

p→
√
x∗.

Exercise 12.9.1. Consider a sequence (Xn : S→ [x,∞))∞n=1, where x ∈ R++, such
that Xn

p→ x∗ ∈ R. Show that x∗ ∈ [x,∞) and x∗/Xn
p→ 1.

12.10 The (weak) law of large numbers

A sequence (Xn)
∞
n=1 of random variables is said to be i.i.d. if it is independent and

for every n and n ′, p(Xn ∈ D) = p(Xn ′ ∈ D) for all D ⊆ R.
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Theorem 12.10.1 (The Weak Law of Large Numbers). Let (Xn)
∞
n=1 be an i.i.d.

sequence of random variables, and suppose that, for all n, E(Xn) = µ ∈ R and
V(Xn) = σ2 ∈ R++. The sequence of random variables given by X̄n =

∑n
k=1 Xk/n

converges in probability to µ.

Proof. Given that (Xn)
∞
n=1 is i.i.d. E(X̄n) = µ and V(X̄n) = σ2/n.5 Now, by 5 Showing this is left as an exercise.

Corollary 12.6.1, for ε > 0 one has that

p(|X̄n − µ| > ε) 6
σ2

nε2
,

so limn→∞ p(|X̄n − µ| > ε) 6 limn→∞ σ2/(nε2) = 0.

Exercise 12.10.1. Let (Xn)
∞
n=1 be a sequence of random variables. Define the

sequence (X̄n)
∞
n=1 as in Theorem 12.10.1, and the sequence

Vn =
1

n− 1

n∑
k=1

(Xk − X̄n)
2

for all n ∈ N. Show that X̄n+1 = (Xn+1 +nX̄n)/(n+ 1) and

nVn+1 = (n− 1)Vn + (
n

n+ 1
)(Xn+1 − X̄n)

2.

Moreover, show that, under the assumptions of the Theorem, E(
√
n(X̄n−µ)/σ) =

0 and V(
√
n(X̄n − µ)/σ) = 1.

Exercise 12.10.2. Prove the following result: let X be an absolutely continuous
random variable, and fix Ω ⊆ R such that p(X ∈ Ω) ∈ (0, 1). Consider the experiment
where n ∈ N realizations of X are taken independently, and let Gn be the relative
frequency with which a realization in Ω is obtained in the experiment. Then, Gn

p→
p(X ∈ Ω).

The “Strong” Law of Large Numbers gives an analogous result for almost sure con-
vergence. In econometrics, the weak law usually suffices.

12.11 Central limit theorem

Theorem 12.11.1 (The Central Limit Theorem). Let (Xn)∞n=1 be an i.i.d. sequence
of random variables, and suppose that, for every n, E(Xn) = µ ∈ R, V(Xn) =

σ2 ∈ R++ and MXn = MX is defined in an open neighborhood of 0. Define the
sequence (X̄n)

∞
n=1 as in Theorem 12.10.1. Then,

√
n
X̄n − µ

σ

d→
∫x
−∞

1√
2π
e−

x2
2 dx.

Proof. Define the sequence Yn = (Xn − µ)/(σ), and denote by MY the moment gen-
erating function common to all the Ynvariables (which we can do, because (Xn)

∞
n=1 is
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i.i.d.). Note that E(Yn) = 0 and V(Yn) = 1, and that

1√
n

n∑
k=1

Yk =
1√
n

n∑
k=1

Xk − µ

σ

=

√
n

σ

n∑
k=1

(
Xk
n

−
µ

n
)

=

√
n

σ
(X̄n − µ),

so

M√
n
σ (X̄n−µ)

(t) = M 1√
n

∑n
k=1 Yk

(t)

= E(et
1√
n

∑n
k=1 Yk)

= E(
n∏
k=1

e
t 1√
n
Yk)

=

n∏
k=1

E(et
1√
n
Yk)

=

n∏
k=1

MY(t
1√
n
)

= MY(t
1√
n
)n.

Taking a Taylor expansion to the right-hand side of the previous expression, around 0,
we get that

MY(t
1√
n
) =MY(0) +M ′Y(0)

t√
n
+

1
2
M ′′Y(0)

t2

n
+ R3(

t√
n
),

where, by Taylor’s theorem,

lim
n→∞( t√n )−2R3(

t√
n
) = 0.

By construction,M ′Y(0) = E(Yn) = 0 andM ′′Y(0) = E(Y2n) = V(Yn) = 1, which implies
that

MY(t
1√
n
) = 1+

1
2
t2

n
+ R3(

t√
n
).

It then follows that

lim
n→∞MY(t 1√

n
)n = lim

n→∞(1+ 1
2
t2

n
+ R3(

t√
n
))n

= lim
n→∞(1+ 1

n
(
1
2
t2 +nR3(

t√
n
)))n

= e
t2
2 ,

where the second equality follows from the fact that

lim
n→∞( t√n )−2R3(

t√
n
) = 0
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implies that

lim
n→∞nR3( t√n ) = 0.

But the latter suffices, since e
t2
2 is the moment generating function of∫x
−∞

1√
2π
e−

x2
2 dx.

Exercise 12.11.1. How can both the law of large numbers and the central limit
theorem be true? That is, if the law says that X̄n converges in probability to a
constant (µ), and convergence in probability implies convergence in distribution,
then how can X̄n also converge in distribution to the standard normal?

Take a good look at what the Central Limit Theorem implies. In particular, it does
not imply that every “large” sample of realizations of a random variable “tends” to be
distributed normally!
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