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Abstract

This paper aims to further our understanding of the effect of idiosyncratic risk on the

equity premium. We consider different classes of preferences and different co-variations

between the idiosyncratic shocks’ variance and the economy’s aggregate income. We offer

a complete characterization of the effect for short-lived assets relying on the cross-moments

of different utility function derivatives and the economy’s aggregate income. We also study

the effects of higher-order moments of the distribution of idiosyncratic risk.

Our comparative statics results present a series of corrections to the theoretical equity

premium using a parameterization of the moments of the distribution of idiosyncratic risk.

Our approach can be extended and applied in other contexts, but we recognize that no

correction corresponds exactly to the equity premium except under extra assumptions.

As a test of the robustness of our corrections, we compare them to the exact premium in

a simplified setting where the latter can be explicitly computed. The results suggest that

the approximation errors implicit in our corrections are at least of second order.

A complete characterization is elusive for long-lived assets, but we present sufficient

conditions for reversing the effect on short-lived assets.
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In an economy with aggregate risk, the equity premium is the difference between the expected

return of a dollar invested in an asset bearing the same risk as the whole economy and the

risk-free interest rate. Equivalently, the equity premium measures how much more expensive
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a risk-less asset that pays the expected return of the economy is relative to the price of the

risky return itself. This variable gained notoriety after Mehra and Prescott (1985) observed a

significant difference between the empirical equity premium of the U.S. economy and its theo-

retical counterpart: the equity premium puzzle is the observation that standard macroeconomic

models with homogeneous agents (both ex-ante and ex-post) fail to explain the equity premia

typically observed in the data.1

Shortly after, Mankiw (1986) presented a setting where ex-post heterogeneity affects the eq-

uity premium predicted by homogeneous agent models. Mankiw first observed that, in the

presence of uninsurable idiosyncratic risk, how Mehra and Prescott (1985) modeled the equity

premium is a misspecification, except under the assumption that all the agents in the economy

have quadratic preferences.2 Weil (1992) extended this insight by showing that higher-order

derivatives of the agents’ Bernoulli utility function matter for the determination of the effects of

homoskedastic idiosyncratic risk on asset prices and premia. Later, Constantinides and Duffie

(1996) again observed that failing to account for ex-post heterogeneity is akin to miss-estimating

fundamentals such as the discount factor or the risk aversion coefficient. Indeed, they observed

that the theoretical equity premium is higher in the case of CRRA preferences when there is

counter-cyclically heteroskedastic idiosyncratic risk.3

Unfortunately, the magnitude and even the direction of the effects of ex-post heterogeneity

on the equity premium depend on the details and assumptions of the model used to predict it

theoretically. For the same class of preferences as Constantinides and Duffie (1996), Storesletten

et al. (2007) showed that in an OLG economy, the effect of idiosyncratic shocks on the equity

premium is significantly smaller than in the case considered by Constantinides and Duffie (1996).

Moreover, Lettau (2002) argued that the economy’s stochastic discount factor is independent of

the volatility of idiosyncratic shocks when the agents have CRRA preferences and the ratio of

the stochastic to the aggregate shocks is homoskedastic; and, through this mechanism, Krueger

and Lustig (2010) showed that the result of Constantinides and Duffie (1996) does not hold

when the agents in the economy have CRRA preferences and the distribution of idiosyncratic

risk follows a particular form of pro-cyclical heteroskedasticity in a two-period economy. Under

these assumptions, the equity premium is not affected by idiosyncratic risk.4

This paper aims to further our understanding of the effect of idiosyncratic risk on the equity

1 See also Kocherlakota (1996) and Mehra (2003).

2 Under these preferences, the agents don’t demand savings for precautionary reasons, so the presence of

idiosyncratic shocks does not affect the equilibrium prices of assets.

3 See also the empirical results in Cogley (2002).

4 See also Werning (2015) and Panageas et al. (2020).
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premium. We consider different classes of preferences and different co-variations between the

idiosyncratic shocks’ variance and the economy’s aggregate income. We offer a complete char-

acterization of the effect for short-lived assets, such as those considered in Krueger and Lustig

(2010), relying on the cross-moments of different utility function derivatives and the economy’s

aggregate income. A complete characterization is elusive for long-lived assets, such as those in

Storesletten et al. (2007), but we present sufficient conditions for reversing the effect found by

Constantinides and Duffie (1996).

We also study the effects of higher-order moments of the distribution of idiosyncratic risk. This

exercise is motivated by the theoretical results of Martin (2013) and the empirical work of

Guvenen et al. (2014) and Nakajima and Smirnyagin (2019), which highlight the importance of

higher moments of the distribution of idiosyncratic shocks, in particular its negative skewness

and high kurtosis, and of their cyclicality.5

Our comparative statics results present a series of corrections to the theoretical equity premium

using a parameterization of the moments of the distribution of idiosyncratic risk. Each correc-

tion relies on a Taylor expansion of the representative investor’s marginal utility function, so a

residual term is dismissed from the numerator and the denominator of the relative price of the

risk-less to the risky asset. Our approach can be extended and applied in other contexts, but

we recognize that no correction corresponds exactly to the equity premium except under extra

assumptions. As a test of the robustness of our corrections, we compare the most primitive one

to the exact premium in a simplified setting where the latter can be explicitly computed. The

results suggest that the residual terms dismissed in our corrections are of second order.6

1 A Two-Period Homogeneous Economy

Consider a society consisting of a unit mass of ex-ante identical individuals who live over two

periods. In the present, each individual’s wealth is the constant w̄ > 0. Their future wealth is

the non-degenerate random variable W , whose support is a subset W of R++.

The preferences of each individual over present consumption, c, and future risky consumption,

C, are of the Selden type, namely represented by the function

v(c) + βv(u−1(E[u(C)])), (1)

where v : R+ → R and β > 0 capture the agent’s preference for inter-temporal consumption

5 See also Kocherlakota (1997) and Barro (2006). Scott and Horvath (1980) and Kane (1982) study how

the third and fourth moments of the distribution of risk affect investment decisions.

6 In an empirical exercise, Chabi-Yo and Loudis (2020) derives bounds for the market excess return by

taking a Taylor expansion on the stochastic discount factors.
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smoothing and her impatience, while u : R+ → R is the agent’s Bernoulli utility index, which

models her attitude towards risk.7 Function v is C1(R++), strictly increasing and concave,

whereas u is C3(R++), strictly increasing and strictly concave and has non-negative third

derivative.

Only one asset can be traded: the asset that pays W in the second period. We interpret this

asset as the “equity” of the economy.

1.1 Benchmark: only aggregate risk

In the absence of any other shocks, the present and future consumption of an individual in this

economy are, respectively, c = w̄ − q · y and C = W + W · y, where q denotes the price of the

asset and y is the quantity of the asset demanded by the individual. The portfolio problem of

each agent is, hence,

max
y

{
v(w̄ − q · y) + βv(u−1(E[u(W +W · y)]))

}
.

Since all agents are identical, only a no-trade equilibrium is possible and

q =
βv′(u−1(E[u(W )]))

v′(w̄)

E[u′(W ) ·W ]

u′(u−1(E[u(W )]))
. (2)

If we define the function m : R++ → R, as

m(w) =
βv′(u−1(E[u(W )]))

v′(w̄)
· E[u′(w)]

u′(u−1(E[u(W )]))
,

then the economy’s stochastic discount factor is the random variable m(W ), and we can re-write

Eq. (2) as q = E[m(W ) ·W ].

Using the same pricing kernel for other income flows, note that if the agents could also trade a

risk-less asset with payoff E(W ), its price would equal

E[m(W ) · E(W )] = E[m(W )] · E(W ) =
βv′(u−1(E[u(W )]))

v′(w̄)
· E[u′(W )] · E(W )

u′(u−1(E[u(W )]))
.

The equity premium, in the absence of any other risk, is

p̄ =
E[m(W )] · E(W )

E[m(W ) ·W ]
− 1 =

E [u′(W )] · E(W )

E [u′(W ) ·W ]
− 1 = −Cov[u′(W ),W ]

E[u′(W ) ·W ]
, (3)

where Cov is the covariance operator.8

7 See Selden (1978).

8 In the asset pricing literature, the risk-free rate rf is defined by 1 + rf = 1/E[m(W )], while the realized

return of the market portfolio is the random variable 1 +Rm = W/q = W/E[m(W ) ·W ]. The empirical equity

premium equals

E(Rm − rf ) =
E(W )

E[m(W ) ·W ]
− 1

E[m(W )]
=

1

E[m(W )]
·
{

E[m(W )] · E(W )

E[m(W ) ·W ]
− 1

}
,

which implies that E(Rm − rf ) = (1 + rf )p̄. Our definition of the equity premium is, thus, the empirical equity

premium discounted at the risk-free rate.
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That the constant
βv′(u−1(E[u(W )]))

v′(w̄)
· 1

u′(u−1(E[u(W )]))

cancels out in the computation of this relative price says that the equity premium depends on

the agents’ attitude towards risk but not on their impatience or attitude toward inter-temporal

smoothing. While these two latter considerations affect the prices of the risky and the risk-less

assets, their relative price depends only on the individual’s attitude towards risk.9

1.2 Idiosyncratic risk

While all the agents in the economy are ex-ante identical, we want to consider the effects of ex-

post heterogeneity. To model this, let random variable S, with E(S | W ) = 0, be each agent’s

uninsurable, future idiosyncratic risk. When holding y units of the risky asset, an agent’s future

consumption is C = W + S +W · y, and the equity premium is

p =
E [m(C)] · E(W )

E [m(C) ·W ]
− 1 =

E [u′(C)] · E(W )

E [u′(C) ·W ]
− 1. (4)

Iterating expectations, this is

p =
E {E [u′(W + S) | W ]} · E(W )

E {E [u′(W + S) | W ] ·W}
− 1. (5)

Note from Eq. (5) that if the economy displays idiosyncratic risk, using Eq. (3) instead of

Eq. (4) misspecifies the equity premium, as it amounts to assuming that

E [u′(W + S) | W ] = u′ (E(W + S | W )) ,

which in general requires that the Bernoulli function be quadratic.10

From now on, we assume that the individuals display strict prudence, namely that u′′′ > 0.

1.3 Idiosyncratic risk and the equity premium

Using the expansion

u′(w + s) ≈ u′(w) + u′′(w) · s+ 1
2
· u′′′(w) · s2, (6)

we get that

E [u′(W + S) | W ] ≈ u′(W ) + 1
2
· u′′′(W ) · Var(S | W ), (7)

9 The use of Selden preferences generalizes the more traditional Expected Utility approach: if one lets v = u,

Eq. (1) becomes u(c) + βE[u(C)]. A similar argument to the previous observation yields that our results are

valid in the case where the individual’s preferences are represented by the function v(c) + βE[u(C)].

10 This observation is Proposition 1 in Mankiw (1986) and part of the motivation for Weil (1992).
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where Var is the variance operator. This observation allows us to propose a first correction to

the equity premium: we approximate Eq. (5) by

p̂ =
E
[
u′(W ) + 1

2
· u′′′(W ) · Var(S | W )

]
· E(W )

E
{[
u′(W ) + 1

2
· u′′′(W ) · Var(S | W )

]
·W
} − 1, (8)

and to perform comparative statics, we parameterize the conditional variance of the idiosyn-

cratic shock by assuming that Var(S | W ) = σ2W η almost surely, for constants σ > 0

and η.

The following result is the most basic one in the paper. Still, we argue it in detail, as the proofs

of more involved results will resemble this argument.11

Theorem 1. The equity premium p̂ ranges monotonically from p̄, when σ = 0, to

lim
σ→∞

p̂ =
E [u′′′(W ) ·W η] · E(W )

E [u′′′(W ) ·W η+1]
− 1.

Moreover, the following four statements are equivalent:

(a) p̂ T p̄;

(b)
∂p̂

∂σ
T 0;

(c)
E [u′′′(W ) ·W η]

E [u′′′(W ) ·W η+1]
T

E [u′(W )]

E [u′(W ) ·W ]
; and

(d)
Cov[u′′′(W ) ·W η,W ]

E[u′′′(W ) ·W η+1]
S

Cov[u′(W ),W ]

E[u′(W ) ·W ]
.

Proof. Under the assumed functional form of Var(S | W ), Eq. (8) rewrites as

p̂ =
E [u′(W )] · E(W ) + 1

2
· E [u′′′(W ) ·W η] · E(W ) · σ2

E [u′(W ) ·W ] + 1
2
· E [u′′′(W ) ·W η+1] · σ2

− 1.

The two limits follow by direct computation.

The equivalence between (a) and (b) is straightforward. To see that (b) and (c) are equivalent,

it simplifies our notation if we write

p̂ =
N + 1

2
· E [u′′′(W ) ·W η] · E(W ) · σ2

D + 1
2
· E [u′′′(W ) ·W η+1] · σ2

− 1,

where N = E [u′(W )] · E(W ) and D = E [u′(W ) ·W ] are, respectively, the numerator and the

denominator in the definition of p̄, as per Eq. (3). By direct computation, and since σ > 0,

note that p̂ is increasing, constant or decreasing in σ depending on whether

D · E(W ) · E[u′′′(W ) ·W η] T N · E(W ) · E
[
u′′′(W ) ·W η+1

]
.

11 The theorem that follows continues to hold for any parameterization of the conditional variance of the

form Var(S | W = w) = σ2 · η(w), for any function η : W → R++. The subsequent results require the specific

parameterization we are using.
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By monotonicity and strict prudence, and since W takes only positive values, D > 0, E(W ) > 0,

and E [u′′′(W ) ·W η+1] > 0. Thus, we can rewrite this expression as

E[u′′′(W ) ·W η]

E [u′′′(W ) ·W η+1]
T
N

D
,

namely statement (c).

Finally, to see that (c) and (d) are equivalent, note that

E [u′′′(W ) ·W η]

E [u′′′(W ) ·W η+1]
T

E [u′(W )]

E [u′(W ) ·W ]

⇔ E [u′′′(W ) ·W η] · E(W )

E [u′′′(W ) ·W η+1]
− 1 T

E [u′(W )] · E(W )

E [u′(W ) ·W ]
− 1

⇔ −Cov [u′′′(W ) ·W η,W ]

E [u′′′(W ) ·W η+1]
T −Cov [u′(W ),W ]

E [u′(W ) ·W ]

Later on, it will be helpful to write condition (c) more concisely as

E [u′′′(W ) ·W η] · E(W )

E [u′′′(W ) ·W η+1]
− 1 T p̄.

Also, note that the denominators on both sides of the expression in condition (d) are positive,

and risk aversion implies that the numerator on its left-hand side is negative, so the ratio on the

left-hand side is negative. None of our assumptions so far pins down the sign of the numerator

on the right-hand side, though.

2 Two Important Examples

We now consider two canonical classes of Bernoulli functions to obtain concrete results.

2.1 CARA Preferences

To study the class of functions that display constant absolute risk aversion, in this section,

we assume that the Bernoulli function is exponential, namely that u(w) = −e−αw for some

constant α > 0.

Theorem 2. Suppose that u displays CARA. Whether the equity premium is larger, equal, or

smaller in the presence of idiosyncratic risk depends on whether this risk is counter-, a-, or

pro-cyclical. That is,

p̂ T p̄⇔ η S 0.

Proof. We know from Theorem 1, by direct computation, that under this functional form,

p̂ T p̄⇔ E(α3e−αW ·W η)

E(α3e−αW ·W η+1)
T

E(αe−αW )

E(αe−αW ·W )
.
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Whether p̂ is larger, equal, or smaller than p̄ depends thus on the sign of

E(e−αW ·W η) · E(e−αW ·W )− E(e−αW ) · E(e−αW ·W η+1).

If we let V be an (ancillary) random variable distributed identically to W and independent from

it, we can rewrite the latter expression as E
[
e−α(W+V ) ·W η · (V −W )

]
, which is proportional

by a factor of 1/2 Pr(V 6= W ) > 0, to

E
[
e−α(W+V ) ·W η · (V −W ) | V > W

]
+ E

[
e−α(W+V ) ·W η · (V −W ) | V < W

]
.

This expression is equivalent to

E
[
e−α(W+V ) ·W η · (V −W ) | V > W

]
+ E

[
e−α(V+W ) · V η · (W − V ) | W < V

]
,

which, by direct computation, is

E
[
e−α(W+V ) · (W η − V η) · (V −W ) | V > W

]
.

This number is positive, null, or negative, depending on whether η is negative, null, or posi-

tive: the terms e−α(W+V ) and V −W are positive, given the condition of the expectation; the

integrand, thus, has the same sign as W η − V η when V > W .

Note that if η = 0, the argument is pretty simple:

p̂ =
E(α3e−αW )

E(α3e−αW ·W )
=

E(αe−αW )

E(αe−αW ·W )
= p̄.

2.2 CRRA preferences

We now focus on Bernoulli functions with constant relative risk aversion. The property that

this class gives us is that the first derivative of the Bernoulli function is homogeneous so that

we can write u′(w) = u′(1) · w−ρ for some constant ρ > 0.

Theorem 3. Suppose that u displays CRRA. Whether the equity premium is larger, the same,

or smaller in the presence of idiosyncratic risk depends on whether η is smaller, equal, or larger

than 2. That is,

p̂ T p̄⇔ η S 2.

Proof. Substituting the functional form of the conditional variance of S, we get, again by

Theorem 1, that

p̂ T p̄⇔ E [ρ(1 + ρ) ·W η−ρ−2]

E [ρ(1 + ρ) ·W η−ρ−1]
T

E(W−ρ)

E(W−ρ+1)
.

We thus need to show that η < 2 is necessary and sufficient for

E(W η−ρ−2) · E(W−ρ+1) > E(W−ρ) · E(W η−ρ−1).
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Let us define the random variable V as in the proof of Theorem 2. By direct computation, we

need to argue that

E
[
W−ρ · V −ρ+1 · (W η−2 − V η−2)

]
> 0.

Using the same technique as in the proof of Theorem 2, the left-hand side of this expression is

directly proportional to

E
[
W−ρ · V −ρ · (V η−2 −W η−2) · (W − V ) | V > W

]
.

This expression is positive if, and only if, η < 2.

As before, note that if Var(S | W ) = σ2W 2, with u′′′(w) = ρ(ρ+ 1)u(1) · w−(ρ+2), we get

p̂ =
E
{[

1 + ρ(ρ+ 1)σ
2

2

]
·W−ρ

}
· E(W )

E
{[

1 + ρ(ρ+ 1)σ
2

2

]
·W−ρ+1

} − 1 = p̄.

2.3 Risk aversion and the cyclicality of the volatility of idiosyncratic shocks

A comparison of the previous two theorems suggests a connection between the behavior of the

risk aversion coefficients, the behavior of the conditional variance of the idiosyncratic shocks,

and the latter’s effect on the equity premium.

As is well known, the absolute risk aversion coefficient approximates the willingness to pay to

insure against additive shocks of variance 2, and Theorem 2 states that when such willingness to

pay is constant, the equity premium increases, remains, or decreases, depending on whether the

volatility of the absolute idiosyncratic shock S is counter-cyclical, acyclical, or pro-cyclical.

The relative risk aversion coefficient, on the other hand, approximates an agent’s willingness to

pay to insure against multiplicative shocks of variance 2. In the class of preferences of Theorem

3, this coefficient is constant, and we can rewrite the conclusion of that theorem as saying that

the presence of idiosyncratic risk increases, decreases, or leaves the risk premium unchanged

depending on whether the volatility of the relative idiosyncratic shock S/W is counter-cyclical,

acyclical, or pro-cyclical.

To reiterate, in particular:

Corollary 1. Suppose that the absolute idiosyncratic shock is homoskedastic so that Var(S |
W ) = σ2 > 0 almost surely. Then:

(a) if the Bernoulli function exhibits CARA, p̂ does not depend on σ; while

(b) if it displays CRRA, p̂ is increasing in σ.
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If, alternatively, the relative idiosyncratic shock is homoskedastic and Var(S/W | W ) = σ2 > 0

almost surely, then:

(c) if the Bernoulli function displays CARA, p̂ is decreasing in σ; while

(d) if it is of CRRA, p̂ does not depend on σ.

2.4 Accuracy of the approximations

The correction we propose to the equity premium relies on Taylor approximations to the agents’

marginal utility function. Equations (6) and (7) are equivalent to

u′(w + s) = u′(w) + u′′(w) · s+ 1
2
· u′′′(w) · s2 +O(s3),

and

E [u′(W + S) | W ] = u′(W ) + 1
2
· u′′′(W ) · Var(S | W ) + o(Var(S | W )),

so in defining p̂ we dismiss o(Var(S | W )) terms in both its numerator and its denominator.

To assess the quantitative implication of this dismissal, we consider an example where we can

compute the equity premium p exactly, and compare it with p̂.

Suppose the aggregate income W takes two values, wh and w`, with equal probability. In

addition, suppose the idiosyncratic shock S follows the uniform distribution over the interval

[−δi, δi], conditional on aggregate state i = h, `. Under these assumptions,

E [u′(W + S) | W = wi] =

∫ δi

−δi

u′(W + s)

2δi
ds =

u(wi + δi)− u(wi − δi)
2δi

. (9)

Tables 1 and 2 report the values of p̄, p, and p̂, namely the equity premium when ignoring

idiosyncratic risk, the actual premium, and the correction of the former by the variance of the

idiosyncratic component. In those tables, wh = 10 and w` = 8, while the other parameters are

allowed to vary.

To measure idiosyncratic volatility, we calibrate σ so that the ratio

min{W + S}
min{W}

takes the values 95%, 90%, 75%, and 50%. We consider both classes of canonical Bernoulli

functions and different values of their respective risk aversion coefficients. Importantly, we

consider three values of η for each class that make the absolute or relative shock’s volatility

counter-cyclical, a-cyclical, or pro-cyclical.

Table 1 shows the results for CARA Bernoulli functions. In these computations, the differences

between p̂ and p are always small, which brings confidence about the conclusions we derive
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from our theorems. In line with Theorem 2, when the variance of S is acyclical, so η = 0,

p̂ = p = p̄. When such variance has cyclical variation, the qualitative results of the theorem

also hold, and, importantly, the table gives us that

p̂ ≷ p ≷ p̄⇔ η ≶ 0.

When approximating the economy’s stochastic discount factor as we have, our measures of the

equity premium need not be equal to the actual premium of the economy, and we only consider

them to be corrections to the premium computed when idiosyncratic risk is ignored. Still, the

direction of our corrections agrees with the actual effect of the risk, and p̂ is a much better

estimate of p than p̄.

For the case of CRRA preferences, we report the results in Table 2. When η = 2, the relative

shock S/W is homoskedastic, and the table confirms the result of Theorem 3: p̂ = p = p̄. When

η = 1 or η = 3, the variance of S/W is, respectively, counter- or pro-cyclical. In these cases,

the result also conforms with the insight of the theorem and, moreover,

p ≷ p̂ ≷ p̄⇔ η ≶ 2.

Once again, the direction of our corrections conforms with the actual effect, and the difference

between p̂ and p is significantly smaller than between p̄ and p.

3 Skewness

The equity premium defined in Eq. (8) is a correction to Eq. (3) that takes into account the

effects of the variance of idiosyncratic risk only. Guvenen et al. (2014), however, noted the

significance of the latter risk’s negative skewness. This section proposes a further correction to

the premium that considers this moment. We determine the effect of skewness on the premium,

re-calculate the effect of the variance, and calculate how the skewness changes the magnitude

of the latter effect.

Our previous analysis relied on the second-order expansion (6). From now on, we refer to the

premium resulting from this expansion, namely Eq. (8), as p̂2. The third-order expansion

u′(w + s) ≈ u′(w) + u′′(w) · s+ 1
2
· u′′′(w) · s2 + 1

6
· u[4](w) · s3

yields

E [u′(W + S) | W ] ≈ u′(W ) + 1
2
· u′′′(W ) · Var(S | W ) + 1

6
· u[4](W ) · E(S3 | W ).
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3.1 Acyclical skewness

Assume first that the skewness coefficient of the distribution of idiosyncratic risk is the con-

stant

γ = Skew(S | W ) =
E(S3 | W )

Var(S | W )3/2
≤ 0, (10)

and maintain the assumption that Var(S | W ) = σ2W η. In this setting, we define the pre-

mium

p̂3 =
E
[
u′(W ) + σ2

2
· u′′′(W ) ·W η + γσ3

6
· u[4](W ) ·W 3η/2

]
· E(W )

E
{[
u′(W ) + σ2

2
· u′′′(W ) ·W η + γσ3

6
· u[4](W ) ·W 3η/2

]
·W
} − 1,

which explicitly corrects for the effect of skewness and redefines the effect of the variance on

the equity premium.

To ensure positive asset prices, we further assume that the Bernoulli function is temperate, or

risk-averse of order 4, namely that u[4] ≤ 0.12 Our first result is on the direct effect of the

skewness on the premium:

Theorem 4. The equity premium p̂3 ranges monotonically between p̂2, when γ = 0, and

lim
γ→−∞

p̂3 =
E
[
u[4](W ) ·W 3η/2

]
· E(W )

E [u[4](W ) ·W 1+3η/2]
− 1.

Moreover, the following three statements are equivalent:

(a) p̂3 T p̂2;

(b)
∂p̂3
∂γ

T 0; and

(c)
E
[
u[4](W ) ·W 3η/2

]
· E(W )

E [u[4](W ) ·W 1+3η/2]
− 1 S p̂2.

The proof of this result is very similar to the argument for Theorem 1, so we defer it, along

with all the other proofs in the paper, to an appendix.13

Our next result re-calculates the effect of the variance, given the skewness:

Theorem 5. The equity premium p̂3 ranges between p̄, when σ = 0, and

lim
σ→∞

p̂3 =
E
[
u[4](W ) ·W 3η/2

]
· E(W )

E [u[4](W ) ·W 1+3η/2]
− 1.

Moreover, p̂3 ≥ p̄ and ∂p̂3/∂σ ≥ 0 if

E[u[4](W ) ·W 3η/2]

E [u[4](W ) ·W 1+3η/2]
≥ E[u′′′(W ) ·W η]

E [u′′′(W ) ·W 1+η]
≥ E[u′(W )]

E[u′(W ) ·W ]
. (11)

12 See Eeckhoudt and Schlesinger (2006).

13 A condition analogous to (d) in Theorem 1 can be derived, but it is rather cumbersome and uninformative.
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If both of these inequalities fail, then p̂3 ≤ p̄ and ∂p̂3/∂σ ≤ 0.

Finally, we compute how the idiosyncratic shock’s skewness affects the way its variance impacts

the premium.

Theorem 6. Suppose first that Eq. (11) holds. Then,

(a)
∂2p̂3
∂γ∂σ2

≥ 0 if

γ ≤ min

{
E[u′(W ) ·W ] + σ2

2
· E [u′′′(W ) ·W η+1]

σ3

6
· E [u[4](W ) ·W 3η/2+1]

,
3E [u′′′(W ) ·W η+1]

σ4 · E [u[4](W ) ·W 3η/2+1]

}
; (12)

(b)
∂2p̂3
∂γ∂σ2

≤ 0 if

γ ≥ max

{
E[u′(W ) ·W ] + σ2

2
· E [u′′′(W ) ·W 1+η]

σ3

6
· E [u[4](W ) ·W 1+3η/2]

,
3E [u′′′(W ) ·W 1+η]

σ4 · E [u[4](W ) ·W 1+3η/2]

}
. (13)

On the other hand, if both inequalities in Eq. (11) fail, then the condition in Eq. (12) suffices

for ∂2p̂3/∂γ∂σ
2 ≤ 0, while the condition in Eq. (13) implies that ∂2p̂3/∂γ∂σ

2 ≥ 0.

3.2 The two examples

These theorems allow us to determine the effects unambiguously for the two canonical fam-

ilies of Bernoulli functions studied in Section 2. For concreteness and to maintain simpler

expressions, we consider only the cases when the absolute and relative idiosyncratic shock is

homoskedastic.

Since the exponential Bernoulli function of Subsection 2.1 is temperate, we can apply the

previous theorems:

Theorem 7. Suppose that u displays CARA.

(a) If the absolute idiosyncratic shock is homoskedastic, namely if η = 0, then p̂3 depends

neither on the variance σ nor on the skewness γ. In fact, p̂3 = p̂2 = p̄.

(b) If, on the other hand, the relative idiosyncratic shock is homoskedastic, so η = 2, then p̂3

is decreasing in σ and increasing in γ, and p̂3 ≤ p̂2 < p̄. Also,

∂2p̂3
∂γ∂σ2

≥ (≤) 0

for

γ ≥ max (≤ min)

{
−

E
[
e−αW ·W · (1 + α2σ2/2W 2)

]
α3σ3 · E(e−αW ·W 4)

,− 3 · E(e−αW ·W 3)

ασ4 · E(e−αW ·W 4)

}
.
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As for the CRRA preferences of Subsection 2.2, since they too are temperate:

Theorem 8. Suppose that u displays CRRA.

(a) If the absolute idiosyncratic shock is homoskedastic, so η = 0, then p̂3 is increasing in σ

and decreasing in γ, and p̂3 ≥ p̂2 > p̄. Moreover,

∂2p̂3
∂γ∂σ2

≥ (≤) 0

whenever

γ ≤ min (≥ max)

{
−6 · [E(W−ρ+1) + σ2/2 · (ρ+ 1) · E(W−ρ−1)]

σ3 · (ρ+ 1) · (ρ+ 2) · E(W−ρ−2)
,− 3 · E(W−ρ−1)

σ4 · (ρ+ 2)E(W−ρ−2)

}
.

(b) If, on the other hand, the relative idiosyncratic shock is homoskedastic, namely if η = 2,

then p̂3 depends nether on the variance σ nor on the skewness γ and p̂3 = p̂2 = p̄.

3.3 Cyclicality of the skewness

In the previous two subsections, we maintained that the skewness of the idiosyncratic shock,

conditional on the aggregate income, is negative and constant as per Eq. (10). Under our

parameterization for the conditional variance, this means that the third moment E(S3 | W ) =

γσ3W 3η/2 is pro-cyclical when the variance is counter-cyclical, namely when η > 0. While this

feature is consistent with the findings of Nakajima and Smirnyagin (2019),14 we now complement

the analysis by allowing for an extra parameter that disentangles the dependence on the two

moments on the realization of aggregate income.

Maintaining, hence, the assumption that Var(S | W ) = σ2W η, we further assume that Skew(S |
W ) = γW ζ almost surely. This amounts to the assumption that E(S3 | W ) = γσ3W ζ+3η/2,

which is counter-cyclical if, and only if, ζ + 3η/2 < 0.15

Under this assumption, Theorem 4 continues to be valid so long as we rewrite condition (c)

as
E
[
u[4](W ) ·W ζ+3η/2

]
· E(W )

E [u[4](W ) ·W 1+ζ+3η/2]
− 1 S p̂2,

and Theorem 5 simply requires that Eq. (11) be adapted as

E[u[4](W ) ·W ζ+3η/2]

E [u[4](W ) ·W 1+ζ+3η/2]
≥ E[u′′′(W ) ·W η]

E [u′′′(W ) ·W 1+η]
≥ E[u′(W )]

E[u′(W ) ·W ]
.

Regarding the effects of the two coefficients σ and γ, the presence of the two parameters η and

ζ requires that a joint condition be satisfied and leaves room for some ambiguity. When the

14 See also Catherine (2022).

15 We maintain the assumption that γ ≤ 0.
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Bernoulli function exhibits CARA,

p̂3 ≥ p̂2 ≥ p̄⇐ ζ ≤ min
{
−3η

2
,−η

2

}
,

and

p̂3 ≤ p̂2 ≤ p̄⇐ ζ ≥ max
{
−3η

2
,−η

2

}
.

For CRRA preferences, on the other hand,

p̂3 ≥ p̂2 ≥ p̄⇐ ζ ≤ min
{

3− 3η
2
, 1− η

2

}
,

and

p̂3 ≤ p̂2 ≤ p̄⇐ ζ ≥ max
{

3− 3η
2
, 1− η

2

}
.

These last observations generalize the corresponding parts of Theorems 7 and 8. Statement (a)

in Theorem 7 covers the case when the absolute idiosyncratic shock S has acyclical conditional

second and third moments, which corresponds to ζ = 3η/2 = η/2. Interestingly, statement (b)

in Theorem 8 imposes the same acyclicality on the conditional moments of the relative shock

S/W : with Var(S/W | W ) = σ2W η−2 and E[(S/V )3 | W ] = γσ3W ζ+3η/2−3, acyclicality of these

two moments requires η = 2 and ζ = 0, which is precisely where ζ = 3− 3η/2 = 1− η/2.

4 Higher-Order Moments

The effect of higher-order moments of the distribution of idiosyncratic shocks on the equity

premium critically depends on the agents’ higher-order risk aversion.16 In this section, we

provide a full characterization using the nth-order expansion on the distribution of the marginal

utility.

Suppose that the ith standardized moment of the conditional distribution of S is the constant

µi <∞ almost surely.17 The nth-order approximation to the marginal utility is, analogously to

Eq. (6),

u′(w + s) ≈
n+1∑
i=1

1
(i−1)! · u

[i](w) · si−1.

This expression yields a further correction to the equity premium,

p̂n =
E
[∑n+1

i=1
1

(i−1)! · u
[k](W ) · Var(S | W )

i−1
2 · µi−1

]
· E(W )

E
[∑n+1

i=1
1

(i−1)! · u[k](W ) · Var(S | W )
i−1
2 · µi−1 ·W

] − 1, (14)

16 Eeckhoudt and Schlesinger (2006) show that the sign of the nth-order derivative of the utility function char-

acterizes agent’s nth order risk attitude. In addition, Loubergé et al. (2020) extends the result to multiplicative

risks.

17 That is, that E(Si | W ) = Var(S | W )i/2 · µi, W -a.s., for all i ≥ 2. We maintain the assumption that

µ1 = 0, and adopt the convention that µ0 = 1.
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which we can use to study the effects of the higher-order moments in the same way we used

Eq. (8) to study the effect of its variance.

Following Eeckhoudt et al. (1995), we will say that the Bernoulli function u is risk-averse of

order n if (−1)i · u[i] < 0 for all i = 1, . . . , n.18 This property strengthens the usual hypothesis

that u was strictly non-satiated, strictly risk-averse, and strictly prudent.

Our following result characterizes the effect of each standardized moment µn on p̂n and allows

us to order the different measures of the premium. As before, we adopt the parameterization

V (S | W ) = σ2W η, although this makes no significant difference in the following result.

Theorem 9. Let n ≥ 3, and suppose (−1)i · µi ≥ 0 for all i = 1, . . . , n. If the Bernoulli

function is risk-averse of order n+1, then the equity premium p̂n ranges monotonically between

limµn→0 p̂n = p̂n−1 and

lim
µn→(−1)n+1∞

p̂n =
E
[
u[n+1](W ) ·W nη/2

]
· E(W )

E [u[n+1](W ) ·W nη/2 ·W ]
− 1.

Moreover, the following three statements are equivalent:

(a) p̂n T p̂n−1;

(b)
∂p̂n
∂µn

T 0; and

(c) (−1)n ·

{
E
[
u[n+1](W ) ·W nη/2

]
· E(W )

E [u[n+1](W ) ·W nη/2 ·W ]
− 1

}
T (−1)n · p̂n−1.

This theorem allows us to determine the effects of higher-order moments. For example, since

both families of preferences are risk-averse of order 5, or edgy :

1. In the case of a CARA Bernoulli function:

(a) If the absolute idiosyncratic shock is homoskedastic, so if η = 0, then p̂3 does not

depend on the kurtosis µ4. In fact, p̂4 = p̂3 = p̂2 = p̄.

(b) If, on the other hand, the relative idiosyncratic shock is homoskedastic, so η = 2,

then p̂4 is decreasing in µ4 and p̂4 < p̂3 ≤ p̂2 < p̄.

2. If, on the other hand, the function is of CRRA, then:

(a) If the absolute idiosyncratic shock is homoskedastic, so η = 0, then p̂4 is increasing

in µ4. Moreover, p̂4 > p̂3 ≥ p̂2 > p̄.

18 Risk aversion of order four is often referred to as temperance, while aversion of order five is called edginess.
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(b) If, alternatively, the relative idiosyncratic shock is homoskedastic, namely if η = 2,

then p̂4 does not depend on the kurtosis µ4 and p̂4 = p̂3 = p̂2 = p̄.

5 Long-Lived Assets

Our analysis so far has assumed that the economy’s equity only pays dividends. If, more

realistically, capital is long-lived, we must adjust our analysis to consider the asset’s resale

value as part of its future return. For a specific application, consider the case of a stationary

overlapping generations economy where individuals live for two periods and the only asset in

the economy pays W , i.i.d., every period.

In every period, suppose that there is a unit mass of young individuals, each of whom has

an endowment w̄, and a unit mass of old individuals who each own a unit of an asset whose

dividend is the random variable W we studied before. If the asset is long-lived, the old agents

get to consume both the dividend W and the price q of the asset. The young generation, in

turn, pays q per unit of the asset, anticipating a payoff of W + q one period later.

For reasons that will be clear below, we need to consider a simpler class of preferences to

study this problem. In what follows, we assume that an agent that consumes c when young

and C when old has lifetime utility c + E[u(C)], with a Bernoulli function u that displays

temperance.

Our goal in this section is to further our understanding of the observation by Storesletten et al.

(2007) that the positive effect of the variance of idiosyncratic risk on the equity premium found

by Constantinides and Duffie (1996) largely disappears in an OLG economy. While we provide

sufficient conditions for the premium to increase or decrease in that variance, comparing the

magnitudes of the effects proved elusive in general. Our results still suggest the same insight

as in Storesletten et al. (2007).

5.1 Benchmark: only aggregate risk

In the absence of any other risk, the problem of the young generation is

max
y
{w̄ − q · y + E[u((W + q) · y)]} ,

where y represents, as before, the agent’s demand for equity. The first-order condition of this

problem is that

q = E[u′((W + q) · y) · (W + q)],

while market clearing requires that y = 1, so q is the solution to the equation

q = E[u′(W + q) · (W + q)].
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By the same arguments as before, a risk-less asset with the same expected payoff should be

priced at

E[u′(W + q)] · [E(W ) + q],

so the relative price of the risk-less asset to the risky asset (minus 1) is again the equity

premium:

p̄ =
E[u′(W + q)] · [E(W ) + q]

E[u′(W + q) · (W + q)]
− 1. (15)

5.2 Idiosyncratic risk

If the old generation faces idiosyncratic risk S, the premium is

p =
E[u′(W + q + S)] · [E(W ) + q]

E[u′(W + q + S) · (W + q)]
− 1, (16)

and using Eq. (15) amounts to assuming that

E[u′(W + q + S) | W ] = u′(E[W + q + S | W ]).

In the same vein as Eq. (6), the quadratic expansion

u′(w + q + s) ≈ u′(w + q) + u′′(w + q) · s+ 1
2
· u′′′(w + q) · s2

yields the approximation

p̂ =
E
[
u′(W + q) + 1

2
· u′′′(W + q) · Var(S | W )

]
· [E(W ) + q]

E
{[
u′(W + q) + 1

2
· u′′′(W + q) · Var(S | W )

]
· (W + q)

} − 1 (17)

to the equity premium.

The problem would be a trivial extension of the previous results were it not for the dependence

of q on the distribution of S via the equality

q = E[u′(W + q + S) · (W + q)].

The purpose of this paper is not to develop the general comparative statics of this dependence

but to determine how that dependence affects how the distribution of S impacts the equity

premium.

5.3 Idiosyncratic risk and the equity premium

Maintain the parameterization Var(S | W = w) = σ2wη and, to establish unambiguous lan-

guage, let us denote the right-hand side of Eq. (17) as the function

Π(q, σ) =
E
[
u′(W + q) + σ2

2
· u′′′(W + q) ·W η

]
· [E(W ) + q]

E
{[
u′(W + q) + σ2

2
· u′′′(W + q) ·W η

]
· (W + q)

} − 1.
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In what follows, we will say that the equity premium is decreasing in the price of the asset if

∂Π/∂q < 0, and that it is partially decreasing in σ if ∂Π/∂σ < 0. When, on the other hand,

we say that the premium is decreasingin σ, we will refer to the overall effect

dp̂

dσ
=
∂Π

∂q
· q′ + ∂Π

∂σ
, (18)

where q′ results from implicitly differentiating

q = E[u′(W + q + S) · (W + q)]

with respect to σ.

Theorem 10. Suppose that the price is increasing in σ.

1. If the premium is decreasing in the price, then a necessary condition for the premium to

be non-decreasing in σ is that

Cov(u′(W + q),W )

E(u′(W + q))
>

Cov(u′′′(W + q) ·W η,W )

E(u′′′(W + q) ·W η)
. (19)

2. If, on the other hand, the premium is non-decreasing in q, then Eq. (19) suffices for it to

be increasing in σ.

Since some of the expressions that follow are lengthy, we will sometimes write the random

variable u[n](W + q) simply as U [n]. For example, Eq. (19) becomes

Cov(U ′,W )

E(U ′)
>

Cov(U ′′′ ·W η,W )

E(U ′′′ ·W η)
.

The tension between the direct effect of q and the direct effect of σ arises when the former is

negative. Instead of attempting a full characterization, we find sufficient conditions to resolve

this tension:

Theorem 11. Suppose that the Bernoulli function is risk-averse of order four. The premium

is decreasing in asset price q if

Cov(U ′′′ ·W η,W ) ≤ 0 (20)

and

min

{
Cov(U ′,W )

E(U ′)
,
Cov(U ′′′ ·W η,W )

E(U ′′′ ·W η)

}
≥ max

{
Cov(U ′′,W )

E(U ′′)
,
Cov(U [4] ·W η,W )

E(U [4] ·W η)

}
. (21)

With these two previous results, we can determine how the fact that the equity is long-lived

affects our results in Section 2. Ideally, we would like to compare the magnitude of ∂Π/∂σ

when the asset is short-lived with the magnitude of dΠ/ dσ when it is long-lived. This goal was

impracticable for us, except when ∂Π/∂σ = 0. In that case, we next prove that dΠ/ dσ < 0.

As Storesletten et al. (2007), when the equity is long-lived, the response of the premium to

changes in the variance is “more negative.”
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5.4 Homoskedastic risk and CARA preferences

Consider first the case of homoskedastic idiosyncratic risk, with η = 0 and Var(S | W ) = σ2

almost surely on W , and suppose that the Bernoulli function is exponential.

We already observed that these preferences are temperate. We can also pin down the sign of

the effect of σ on q, as follows:

Lemma 1. Suppose that u displays CARA. Then, the price of the asset is increasing in σ.

Theorems 10 and 11 immediately imply the following two results for this case:

1. the premium is decreasing in asset price q if

min

{
Cov(U ′,W )

E(U ′)
,
Cov(U ′′′,W )

E(U ′′′)

}
≥ max

{
Cov(U ′′,W )

E(U ′′)
,
Cov(U [4],W )

E(U [4])

}
.

2. if the premium is decreasing in asset price, then a necessary condition for it to be non-

decreasing in σ is that
Cov(U ′,W )

E(U ′)
>

Cov(U ′′′,W )

E(U ′′′)
.

(To be sure, note that the condition that Cov[U ′′′,W ] ≤ 0, which specializes Eq. (20) to the case

at hand, does not have to be assumed, as it is implied by the assumption that u[4] < 0.)

These two insights imply the following result. The first of the two statements above holds under

CARA preferences. As per the second statement, this implies a necessary condition known to

be violated.

Theorem 12. Suppose the Bernoulli function displays CARA, and the absolute idiosyncratic

shock is homoskedastic. Then, the equity premium p̂ decreases in σ.

5.5 Homoskedastic relative risk and CRRA preferences

Consider now the case where Var(S/w | W = w) = σ, namely when η = 2, and suppose that

the first derivative of the Bernoulli function is homogeneous.

As before, we already know that these preferences are temperate, but before we apply our

general results to this case, we need to determine the effects of σ on the price of equity:

Lemma 2. Suppose that the Bernoulli function displays CRRA. Then, the price of the asset is

increasing in σ.

Unfortunately, the assumption that η = 2, which is necessary to make the relative shock S/W

homoskedastic, introduces ambiguity in the sign of terms of the form

Cov[u[n](W + q) · Var(S | W ),W ].
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For n = 3, for example, the term u[n](w + q) is decreasing in w, but Var(S | W = w) is

increasing; for n = 4, both terms are increasing but the first one is negative. With diffidence,

we resolve these ambiguities by assuming that

q ≤ min {ρ, 1}
2

· infW . (22)

This assumption is imposed on an endogenous variable, but it seems unavoidable.19. Once the

condition is imposed, the following is true:

Lemma 3. Suppose that the Bernoulli function displays CRRA and Eq. (22) holds. Then, the

equity premium p̂ decreases in asset price q.

These two insights imply the following result:

Theorem 13. Suppose that the Bernoulli function displays CRRA, the relative idiosyncratic

shock is homoskedastic, and Eq. (22) holds. Then, the equity premium p̂ decreases in σ.

The strategy for the proof is the same as in Theorem 12: under the assumptions of the theorem,

Lemmas 2 and 3 give us that all the conditions that make Eq. (19) necessary for p̂ non-decreasing

in σ are satisfied. We argue that, nonetheless, Eq. (19) itself fails.

6 Concluding Remarks

6.1 Our results in the context of existing literature

In this paper, we have tried to further our understanding of the effects of the presence of

uninsurable idiosyncratic risk on the relative price of the equity of an economy. The motivation

comes from the early work by Mankiw (1986) and Weil (1992) and the fact that various works

have obtained different results because of different settings. Table 3 summarizes how the results

in the literature relate to some of the results obtained in this paper.

Our first set of results focuses on the effects of the volatility of the idiosyncratic risk. After

observing that the agents’ prudence creates a mechanism for these effects, as Mankiw (1986)

had pointed out, we emphasize that the cyclicality of that volatility and the behavior of the

agents’ risk aversion make a difference. If the agents display constant absolute risk aversion and

the absolute idiosyncratic shock is homoskedastic, the volatility of this shock does not affect

19 A simple example shows that the assumption is not overly restrictive. Consider an economy with two

aggregate states, h and `, with wh = 10 and w` = 8. The probability of state h is 0.6, and the idiosyncratic

risk S follows the uniform distribution over [−1, 1]. The traders have CRRA preference with ρ = 2. With these

parameters, the equilibrium price q = 0.7205, much less than the right-hand side of Eq. (22), which equals 4.

With many other assumptions and parameters, the assumption still holds.



the equity premium; under these preferences, a counter-cyclical variance of the idiosyncratic

shock is necessary and sufficient for the equity premium to be higher due to the presence of this

shock. Suppose the ratio of the idiosyncratic and the aggregate shocks is homoskedastic. In

that case, a similar conclusion applies, mutatis mutandis, when the preferences display constant

relative risk aversion. The literature had observed this latter result in Weil (1992) and Krueger

and Lustig (2010), so we see our results as complementary.

The second set of results relates to the effect of higher moments of the distribution of the

idiosyncratic shocks. Again, how these moments affect the equity premium depends on the

behavior of the agents’ coefficients of risk aversion and the type of cyclicality followed by the

volatility of the idiosyncratic shock. For example, consider this time the case of preferences

displaying constant relative risk aversion. If the relative shock is homoskedastic, once again,

the higher moments of the distribution of idiosyncratic risk are immaterial for the level of

the equity premium, whereas if it is the absolute shock that is homoskedastic, a negatively

skewed, leptokurtic distribution generates higher equity premium. These effects are driven by

the fourth and fifth derivatives of the agent’s utility function, which Weil (1992) had already

noted. In that sense, our contribution is the identification of which features of the distribution

of idiosyncratic shocks interact with which derivatives to impact the equity premium.

The previous results are obtained for a two-period economy in which, by design, the equity of

the economy is short-lived and only pays dividends. To consider long-lived equity, where the

future resale value of an asset naturally affects the present price, we adapt our analysis to a

two-generation OLG economy, which allows us to compare our results with those in Storesletten

et al. (2007). Here, the mathematics is more convoluted, and further assumptions are necessary.

Both for CARA and CRRA preferences, we consider the case in which if the asset were short-

lived, the variance of the idiosyncratic shock would not affect the equity premium. Our results

are that in those same cases, the variance has a negative effect on the premium if the asset

is long-lived. We conjecture that, in general, if the equity is long-lived, the derivative of the

premium with respect to the variance is lower than when the asset is short-lived.

6.2 Extension to an infinite-horizon economy

In all these results, all the agents were ex-ante homogeneous, and we studied only the effect

of ex-post heterogeneity.20 Ex-ante homogeneity is useful because it simplifies the equilibrium

trade in assets, hence their equilibrium price.21 Under specific assumptions, our results allow

us to say something in the case of an infinite-horizon Markovian economy.

20 In the OLG economy, all the young agents are homogeneous.

21 In a different paper, we progress on studying the same problem under ex-ante heterogeneity.
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Let W and S represent the next period aggregate and idiosyncratic shocks, while W̃ and

S̃ denote the present variables. Given W̃ = w̃ and S̃ = s̃, suppose that each the agent

maximizes

v(w̄ − q · y) + βv(u−1(E[u(W + S +W · y) | W̃ = w̃]))

over y, where w̄ = w̃(1 + y−) + s̃ and y− denotes the amount of asset the agent carried from

the last period. Since this economy is recursive, suppose that the maximum of this problem

defines u(w̄), which is the continuation value of starting a period with wealth w̄.

If we assume that function v is linear, we can maintain the feature that there is no asset trade at

equilibrium, which means that the equity premium in the present is the random variable

P̃ =
E[u′(W + S) | W̃ ] · E(W | W̃ )

E[u′(W + S) ·W | W̃ ]
− 1.

Our results generalize to almost sure effects on P̃ in this setting. This observation is helpful if

the assumption on function v is tenable, as it extends our analysis from Selden preferences to

the framework of Epstein and Zin (1991).
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Appendix: Proofs

Proof of Theorem 4: The computation of the two limits and the equivalence of (a) and (b) are straight-
forward, so we only need to prove that (b) and (c) are equivalent.

As in the proof of Theorem 1, we can rewrite

p̂3 =
N2 + 1

6 · E[u[4](W ) ·W 3η/2] · E(W ) · σ3γ
D2 + 1

6 · E[u[4](W ) ·W 3η/2 ·W ] · σ3γ
− 1,

where N2 and D2 are, respectively, the numerator and the denominator in the definition of p̂2, as in
Eq. (14). By direct computation, ∂p̂3/∂γ ≥ 0 if, and only if,

E[u[4](W ) ·W 3η/2] · E(W ) ·D2 ≥ E[u[4](W ) ·W 3η/2+1] ·N2. (23)

With u[4] < 0, by assumption, and since D2 > 0, it follows that

E[u[4](W ) ·W 3η/2 ·W ] ·D2 < 0.

Using this inequality, Eq. (23) is equivalent to

E[u[4](W ) ·W 3η/2] · E(W )

E[u[4](W ) ·W 3η/2 ·W ]
≤ N2

D2
.

Proof of Theorem 5: Once again, the two limits are straightforward. For the second claim, by direct
computation, ∂p̂3/∂σ

2 ≥ 0 if, and only if, the sum of the following three terms is non-positive:

E[u′(W ) ·W ] · E[u′′′(W ) ·W η]− E[u′(W )] · E[u′′′(W ) ·W η+1]

σγ
2 ·
{

E[u′(W ) ·W ] · E[u[4](W ) ·W 3η/2]− E[u′(W )] · E[u[4](W ) ·W 3η/2+1]
}

σ3/2γ
12 ·

{
E[u′′′(W ) ·W η+1] · E[u[4](W ) ·W 3η/2]− E[u′′′(W ) ·W η] · E[u[4](W ) ·W 3η/2+1]

}
.

The first of these terms is non-positive if and only if,

E[u′′′(W ) ·W η]

E[u′′′(W ) ·W η+1]
≥ E[u′(W )]

E[u′(W ) ·W ]
.

Since σγ ≤ 0, the second term is non-positive if, and only if,

E[u[4](W ) ·W 3η/2]

E[u[4](W ) ·W 3η/2+1]
≥ E[u′(W )]

E[u′(W ) ·W ]
.

And since σ3/2γ ≤ 0, the third term is non-positive if, and only if,

E[u[4](W ) ·W 3η/2]

E[u[4](W ) ·W 3η/2+1]
≥ E[u′′′(W ) ·W η]

E[u′′′(W ) ·W η+1]

The two inequalities in Eq. (11) suffice for these last three conditions, and hence for the sum of the
three terms to be non-positive.

Proof of Theorem 6: The argument is largely computational. Suppose one has the function

φ(x, y) =
a+ bx+ cx3/2y

d+ ex+ fx3/2y
,

with a, b, d, e ≥ 0, c, f ≤ 0, x > 0 and y ≤ 0. By direct computation,

∂2φ

∂y∂x
(x, y) ≥ 0
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if, and only if,

3
2(cd− af)(d+ ex− fx3/2y)x1/2 + 1

2(ce− bf)(e− fx2y)x5/2 ≥ 0. (24)

The two inequalities in Eq. (11) guarantee that cd ≤ af and ce ≤ bf . To guarantee Eq. (24), it
then suffices that d + ex ≤ fx3/2y and e ≤ fx2y. Recalling that f ≤ 0, Eq. (12) delivers these two
inequalities.

When both inequalities in Eq. (11) hold, Eq. (24) fails if d+ex ≥ fx3/2y and e ≥ fx2y, which amount
to Eq. (13).

The rest of the argument is similar.

Proof of Theorem 7: For this type of preferences,

p̂3 =
E[e−αW · (1 + σ2

2 α
2 W η − σ3

6 α
3γW 3η/2)] · E(W )

E
[
e−αW · (1 + σ2

2 α
2W η − σ3

6 α
3γW 3η/2) ·W

] − 1.

The first claim is straightforward: if η = 0, after canceling constants,

p̂3 =
E(e−αW ) · E(W )

E (e−αW ·W )
− 1 = p̂2 = p̄.

When η = 2, for the second claim, the argument resembles the proof of Theorem 2.

By Theorem 9, in order to show that p̂3 is increasing in γ, it suffices to argue that

E[u[4](W ) ·W 3] · E(W )

E[u[4](W ) ·W 4]
− 1 < p̂2.

By direct computation, this is equivalent to

E(e−αW ·W 3) · E
[
(1 + σ2

2 α
2W 2) · e−αW ·W

]
− E(e−αW ·W 4) · E

[
(1 + σ2

2 α
2W 2) · e−αW

]
< 0.

Letting random variable V be i.i.d. with W , the left-hand side of this expression rewrites as

E
[
e−α(V+W ) · (1 + σ2

2 α
2V ) · (V −W ) ·W 3

]
.

This number is proportional, by a factor of 1/2 Pr(V 6= W ) > 0, to

E
{
e−α(V+W ) ·

[
(W 3 − V 3) + σ2

2 α
2V 2W 2(W − V )

]
· (V −W ) | V > W

}
< 0.

To re-determine the effect of σ, by Theorem 5, it suffices to show that

E(e−αW )

E(e−αW ·W )
≥ E(e−αW ·W 2)

E(e−αW ·W 3)
≥ E(e−αW ·W 3)

E(e−αW ·W 4)
.

For the first inequality, the same technique used in the previous theorems, with random variable V
being i.i.d. with W , allows us to show that

E(e−αW ·W 2) · E(e−αW ·W )− E(e−αW ) · E(e−αW ·W 3)

is proportional, by a positive factor, to

E
[
e−α(W+V ) · (W 2 − V 2) · (V −W ) |W > V

]
≤ 0.
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For the second inequality,

E(e−αW ·W 3)2 − E(e−αW ·W 4) · E(e−αW ·W 2)

is directly proportional to

E
[
e−α(W+V ) ·W 2 · V 2 · (−W 2 + 2VW − V 2) |W > V

]
≤ 0.

This result on the cross derivative follows immediately from Theorem 6, given that both inequalities
in Eq. (11) fail, as seen above.

Proof of Theorem 8: For the first claim, note that the proof of Theorem 3 implies that

E(W−ρ+1)

E(W−ρ)
>

E(W−ρ−1)

E(W−ρ−2)
.

By the same argument,
E(W−ρ−1)

E(W−ρ−2)
>

E(W−ρ−2)

E(W−ρ−3)
.

It follows that
E[u′(W ) ·W ]

E[u′(W )]
>

E[u′′′(W ) ·W ]

E[u′′′(W )]
>

E[u[4](W ) ·W ]

E[u[4](W )]
,

and hence that
E[u′(W ) ·W ] · E[u[4](W )] > E[u′(W )] · E[u[4](W ) ·W ]

and
E[u′′′(W ) ·W ] · E[u[4](W )] > E[u′′′(W )] · E[u[4](W ) ·W ].

Aggregating,{
E
[
u′(W ) + σ2

2 · u
′′′(W )

]
W
}
· E
[
u[4](W )

]
> E

[
u′(W ) + σ2

2 · u
′′′(W )

]
· E
[
u[4](W ) ·W

]
,

which implies, by Theorem 4, that p̂3 is decreasing in γ.

To see that p̂3 is increasing in σ, we prove that condition (11) holds and invoke Theorem 5. To see
that

E[u′′′(W ) ·W η]

E [u′′′(W ) ·W η+1]
≥ E[u′(W )]

E[u′(W ) ·W ]
,

we need to argue that

E(W η−ρ−2) · E(W 1−ρ)− E(W η−ρ−1) · E(W−ρ) ≥ 0.

Using, as before, an ancillary random variable V that is i.i.d. with W , the latter expectation is directly
proportional to

E
[
W−ρ · V −ρ · (V −W ) · (W−1 − V−1) · (W−1 + V−1) |W > V

]
≥ 0.

The sign of the cross derivative follows from Theorem (6), upon substitution, since we just proved
that condition (11) holds in this case.

As for the second claim, by direct computation,

p̂3 =
E(W−ρ) · E(W ) · [1 + ρ(ρ+ 1)σ

2

2 + ρ(ρ+ 1)(ρ+ 2)σ
3/2

6 γ]

E(W−ρ+1) · [1 + ρ(ρ+ 1)σ
2

2 + ρ(ρ+ 1)(ρ+ 2)σ
3/2

6 γ]
− 1 = p̂2.

Proof of Theorem 9: This proof directly generalizes previous arguments, so we omit it.
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Proof of Theorem 10: Recall Eq. (18). For the first result, note that the first summand on the right-
hand side of the last expression is negative, so a necessary condition for the sum to be positive is that
the second summand be positive. For the second result, under the assumptions, the first summand is
non-negative, so the sum is positive if so is the second summand.

In both cases, all one needs is that ∂Π/∂σ > 0. The proof that this inequality is equivalent to Eq. (19)
resembles the argument for Theorem 1, so we omit it.

Proof of Theorem 11: We can write Eq. (17) as

p̂ =
f(q) + σ2 · g(q)

ϕ(q) + σ2 · γ(q)
,

where
f(q) = E[u′(W + q)] · [E(W ) + q],

g(q) = 1
2E[u′′′(W + q) ·W η] · [E(W ) + q],

ϕ(q) = E[u′(W + q) · (W + q)]

and
γ(q) = 1

2E[u′′′(W + q) ·W η · (W + q)].

With this formulation, p̂ is decreasing in q if, and only if,

[f ′(q) + σ2 · g′(q)] · [ϕ(q) + σ2 · γ(q)] < [ϕ′(q) + σ2 · γ′(q)] · [f(q) + σ2 · g(q)],

which holds if

f ′(q) · ϕ(q) < ϕ′(q) · f(q) (25)

f ′(q) · γ(q) ≤ ϕ′(q) · g(q) (26)

g′(q) · ϕ(q) ≤ γ′(q) · f(q) (27)

g′(q) · γ(q) ≤ γ′(q) · g(q). (28)

Upon substitution, Eq. (25) is equivalent to{
E(U ′′)[E(W ) + q] + E(U ′)

}
· E[U ′ · (W + q)] <

{
E[U ′′ · (W + q)] + E(U ′)

}
· E(U ′) · [E(W ) + q],

which is, by direct computation,{
E(U ′′) · E[U ′ · (W + q)]− E(U ′) · E[U ′′ · (W + q)]

}
· [E(W ) + q] + E(U ′) · Cov(U ′,W ) < 0. (∗)

Since u′ > 0 and u′′ < 0, we have that E(U ′) > 0 and Cov(U ′,W ) < 0, so it suffices that

E(U ′′) · E[U ′ · (W + q)] ≤ E(U ′) · E[U ′′ · (W + q)],

for inequality (∗) to hold, as E(W ) + q > 0. As in the proof of Theorem 1, this is equivalent to

Cov(U ′,W )

E(U ′)
≥ Cov(U ′′,W )

E(U ′′)
,

which is one of the inequalities that are part of Eq. (21).

Similarly, Eq. (26) is equivalent to the requirement that the sum of{
E(U ′′) · E[U ′′′ ·W η · (W + q)]− E[U ′′′ ·W η] · E[U ′′ · (W + q)]

}
· [E(W ) + q] (∗∗)

and
E(U ′) · Cov[U ′′′ ·W η,W ] (∗∗∗)
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be non-positive.

Since u′ > 0 and Cov[U ′′′ ·W η,W ] ≤ 0, we have that the expression in (∗∗∗) is non-positive. On the
other hand, since E(W ) + q > 0, for inequality (∗∗) to hold it suffices that

E(U ′′) · E[U ′′′ ·W η · (W + q)] ≤ E[U ′′′ ·W η] · E[U ′′ · (W + q)],

which is equivalent to
Cov[U ′′′ ·W η,W ]

E[U ′′′ ·W η]
≥ Cov(U ′′,W )

E(U ′′)
.

For Eqs. (25) and (26) to hold true, it thus suffices that

min

{
Cov(U ′,W )

E(U ′)
,
Cov[U ′′′ ·W η,W ]

E[U ′′′ ·W η]

}
≥ Cov(U ′′,W )

E(U ′′)
.

By a virtually identical analysis, using that u′′′ > 0 and u[4] < 0, one can prove that

min

{
Cov(U ′,W )

E(U ′)
,
Cov[U ′′′ ·W η,W ]

E[U ′′′ ·W η]

}
≥ Cov[U [4] ·W η,W ]

E[U [4] ·W η]

suffices for Eqs. (27) and (28)

Proof of Lemma 1: Let u(w) = −e−αw, for some α > 0. Then, u[n](w) = (−α)nu(w) and

q = E
[
u′(W + q + S) · (W + q)

]
= e−αq ·

{
E[u′(W + S) ·W ] + E[u′(W + S)] · q

}
,

so

eαq =
E[u′(W + S) ·W ]

q
+ E[u′(W + S)].

This expression is transcendental, so we can only obtain q′ by implicit differentiation:{
eαq +

E[u′(W + S) ·W ]

q2

}
· q′ = ∂

∂σ

{
E[u′(W + S) ·W ]

q
+ E[u′(W + S)]

}
.

Since exponential preferences are strictly increasing and strictly prudent, we know that

E[u′(W + S) ·W ] = E
{

E[u′(W + S) |W ] ·W
}

and
E[u′(W + S)] = E

{
E[u′(W + S) |W ]

}
are both increasing in σ, which implies that q′ > 0.

Proof of Theorem 12: Let u(w) = −e−αw, for some α > 0. Again, u[n](w) = (−α)nu(w), which implies
that

Cov[u[n](W + q),W ] = (−α)nCov[u(W + q),W ]

and
E[u[n](W + q)] = (−α)nE[u(W + q)].

It follows that
Cov[u[n](W + q),W ]

E[u[n](W + q)]
=

Cov[u(W + q),W ]

E[u(W + q)]

for all orders of differentiation. Theorem 11 implies that premium p̂ is decreasing in q, while Lemma 1
tells us that the price of the asset is increasing in σ. It then follows from Theorem 10 that condi-
tion (19), which does not hold, is necessary for p̂ to be non-decreasing in Σ.
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Proof of Lemma 2: We obtain this result, once again, by implicitly differentiating

q = u′(1) · E[(W + q + S)−ρ · (W + q)]

with respect to σ. By the implicit function theorem, q′ equals the product of

u′(1)

E
[
1 + ρ(W + q + S)−(ρ+1) · (W + q)− (W + q + S)−ρ

] (∗)

and

E

{
∂

∂σ
E[(W + q + S)−ρ |W ] · (W + q)

}
, (∗∗)

so long as the denominator on the former expression is non-zero. We want that denominator to be
strictly positive, which is the case since ρ > 0, W + q > 0 with probability one by assumption, and

ρ(w + q) > 0⇔ 1 +
ρ(w + q)

(w + q + s)ρ+1
>

1

(w + q + s)ρ
.

Since u′(1) > 0, it follows that the term in Eq. (∗) is strictly positive.

That the term in Eq. (∗∗) is also positive is immediate, since (w+ q+ s)−ρ is strictly convex in s, and
an increase in σ is a mean-preserving spread of S given W .

Proof of Lemma 3: By Theorem 11, we need to argue that Eqs. (20) and (21) satisfies under the
premises of the lemma. For simplicity, we divide the proof into a series of claims:

Claim 1. Eq. (20) is satisfied

Proof. We must argue that u′′′(W + q) · Var(S | W ) and W are anti-comonotone with
probability one. Letting the function

w 7→ u′′′(w + q) ·Var(S |W = w) = σρ(ρ+ 1)u′(1)w2,

we have that this mapping is non-increasing so long as w ≥ 2q/ρ. Since q ≤ ρ/2 infW, by
assumption, we have that this inequality holds with probability 1.

Claim 2. The following two inequalities, which are part of Eq. (21), also hold:

Cov(U ′,W )

E(U ′)
≥ Cov(U ′′,W )

E(U ′′)

and
Cov[U ′′′ ·Var(S |W ),W ]

E[U ′′′ ·Var(S |W )]
≥ Cov[U [4] ·Var(S |W ),W ]

E[U [4] ·Var(S |W )]
,

Proof. We can rewrite the inequalities as

E[(W + q)−ρ ·W ]

E[(W + q)−ρ]
≥ E[(W + q)−(ρ+1) ·W ]

E[(W + q)−(ρ+1)]

and
E[(W + q)−(ρ+2) ·W 3]

E[(W + q)−(ρ+2) ·W 2]
≥ E[(W + q)−(ρ+3) ·W 3]

E[(W + q)−(ρ+3) ·W 2]
.

If we define now the function

h(n) =
E[(W + q)−n ·Wm]

E[(W + q)−n ·Wm−1]
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over n > 0, given any m ≥ 0, it suffices to show that h is non-increasing in n.

By direct computation, h′(n) ≤ 0 if, and only if,

E[(W + q)−n ·Wm · ln(W + q)] · E[(W + q)−n ·Wm−1]

is at least as large as

E[(W + q)−n ·Wm−1 · ln(W + q)] · E[(W + q)−n ·Wm].

Letting random variable V be i.i.d. with W , this is the requirement that

E
{

(W − V ) · (VW )m−1 · [(V + q)(W + q)]−n · ln(W + q)
}
≥ 0.

This expectation is proportional, by a factor of Pr(V 6= W )/2, to the sum of

E
{

(W − V ) · (VW )m−1 · [(V + q)(W + q)]−n · ln(W + q) | V > W
}

and
E
{

(W − V ) · (VW )m−1 · [(V + q)(W + q)]−n · ln(W + q) | V < W
}
.

Since V and W follow the same distribution, the latter is

E
{

(V −W ) · (VW )m−1 · [(V + q)(W + q)]−n · ln(V + q) | V > W
}
,

so the sum equals

E
{

(W − V ) · (VW )m−1 · [(V + q)(W + q)]−n · [ln(W + q)− ln(V + q)] | V > W
}
,

which is, indeed, non-negative.

Claim 3. One more of the inequalities in Eq. (21) also holds:

Cov[U ′′′ ·Var(S |W ),W ]

E[U ′′′ ·Var(S |W )]
≥ Cov(U ′′,W )

E(U ′′)
,

Proof. We want to prove that

E[(W + q)−(ρ+2) ·W 3]

E[(W + q)−(ρ+2) ·W 2]
≥ E[(W + q)−(ρ+1) ·W ]

E[(W + q)−(ρ+1)]
,

which is equivalent to the requirement that

E[(W + q)−(ρ+2)W 3] · E[(W + q)−(ρ+1)] ≥ E[(W + q)−(ρ+2)W 2] · E[(W + q)−(ρ+1)W ].

With V defined as above, this is

E

{
V · [(V + q)(W + q)]−(ρ+1) ·

(
V 2

V + q
− W 2

W + q

)}
≥ 0,

or

E

{
(V −W ) · [(V + q)(W + q)]−(ρ+1) ·

(
V 2

V + q
− W 2

W + q

) ∣∣∣∣ V > W

}
≥ 0.

To guarantee this, we need to argue that

v > w ⇒ v2

v + q
≥ w2

w + q
,

or, equivalently, that the ratio w2/(w + q) is non-decreasing for w ∈ W. By direct
computation, this is true since W ⊆ R++ and q ≥ 0.
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Claim 4. The remaining inequality in Eq. (21) also holds:

Cov(U ′,W )

E(U ′)
≥ Cov[U [4] ·Var(S |W ),W ]

E[U [4] ·Var(S |W )]
.

Proof. The desired inequality is

E[(W + q)−ρ ·W ]

E[(W + q)−ρ]
≥ E[(W + q)−(ρ+3) ·W 3]

E[(W + q)−(ρ+3) ·W 2]
,

which is equivalent to the requirement that

E
[
(V −W ) ·W 2 · (V + q)−ρ · (W + q)−(ρ+3)

]
≥ 0,

or, equivalently, that

E

{
(V −W ) · [(V + q)(W + q)]−ρ ·

(
W 2

(W + q)3
− V 2

(V + q)3

) ∣∣∣∣ V > W

}
≥ 0.

For this, it suffices that the ratio w2/(w + q)3 be non-increasing at all w ∈ W. This is
guaranteed, indeed, by the assumption that q ≤ 1/2 infW.

The four claims together yield the hypotheses of Theorem 11.

Proof of Theorem 13: We need to argue that

E[(W + q)−ρ ·W ]

E[(W + q)−ρ]
≤ E[(W + q)−(ρ+2) ·W 3]

E[(W + q)−(ρ+2) ·W 2]
.

To see this, note again that it is equivalent to

E[(V −W ) · V 2 · (V + q)−(ρ+2)(W + q)−ρ] ≥ 0,

or

E

{
(V −W ) · [(V + q)(W + q)]−ρ ·

(
V 2

(V + q)2
− W 2

(W + q)2

) ∣∣∣∣ V > W

}
≥ 0.

For this inequality to hold, it suffices that w/(w + q) be non-increasing at all w ∈ W, which is true
since W ⊆ R++ and q ≥ 0.
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Table 1: CARA preferences: p̄, p, and p̂

η α p̄

min{W + S} ÷min{W}
95% 90% 75% 50%

p p̂ p p̂ p p̂ p p̂

-1

0.5 5.41% 5.42% 5.42% 5.44% 5.44% 5.56% 5.55% 5.93% 5.81%

1 9.24% 9.26% 9.26% 9.30% 9.30% 9.54% 9.47% 10.02% 9.66%

1.5 11.18% 11.20% 11.20% 11.24% 11.23% 11.42% 11.33% 11.70% 11.40%

2 12.00% 12.01% 12.01% 12.03% 12.03% 12.13% 12.07% 12.26% 12.09%

2.5 12.31% 12.32% 12.32% 12.33% 12.33% 12.38% 12.34% 12.43% 12.35%

3 12.43% 12.43% 12.43% 12.44% 12.44% 12.46% 12.44% 12.48% 12.44%

3.5 12.47% 12.48% 12.48% 12.48% 12.48% 12.49% 12.48% 12.49% 12.48%

4 12.49% 12.49% 12.49% 12.49% 12.49% 12.50% 12.49% 12.50% 12.49%

0

0.5 5.41% 5.41% 5.41% 5.41% 5.41% 5.41% 5.41% 5.41% 5.41%

1 9.24% 9.24% 9.24% 9.24% 9.24% 9.24% 9.24% 9.24% 9.24%

1.5 11.18% 11.18% 11.18% 11.18% 11.18% 11.18% 11.18% 11.18% 11.18%

2 12.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00%

2.5 12.31% 12.31% 12.31% 12.31% 12.31% 12.31% 12.31% 12.31% 12.31%

3 12.43% 12.43% 12.43% 12.43% 12.43% 12.43% 12.43% 12.43% 12.43%

3.5 12.47% 12.47% 12.47% 12.47% 12.47% 12.47% 12.47% 12.47% 12.47%

4 12.49% 12.49% 12.49% 12.49% 12.49% 12.49% 12.49% 12.49% 12.49%

1

0.5 5.41% 5.40% 5.40% 5.38% 5.38% 5.22% 5.24% 4.76% 4.94%

1 9.24% 9.23% 9.23% 9.17% 9.18% 8.86% 8.97% 8.11% 8.75%

1.5 11.18% 11.16% 11.16% 11.11% 11.12% 10.84% 11.00% 10.22% 10.92%

2 12.00% 11.98% 11.98% 11.95% 11.96% 11.78% 11.91% 11.37% 11.88%

2.5 12.31% 12.30% 12.31% 12.29% 12.29% 12.20% 12.27% 11.96% 12.27%

3 12.43% 12.43% 12.43% 12.42% 12.42% 12.37% 12.42% 12.25% 12.41%

3.5 12.47% 12.47% 12.47% 12.47% 12.47% 12.45% 12.47% 12.38% 12.47%

4 12.49% 12.49% 12.49% 12.49% 12.49% 12.48% 12.49% 12.44% 12.49%
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Table 2: CRRA preferences: p̄, p, and p̂

η ρ p̄

min{W + S} ÷min{W}
95% 90% 75% 50%

p p̂ p p̂ p p̂ p p̂

1

0.5 0.62% 0.62% 0.62% 0.62% 0.62% 0.63% 0.63% 0.67% 0.66%

1 1.25% 1.25% 1.25% 1.25% 1.25% 1.27% 1.27% 1.37% 1.34%

1.5 1.88% 1.88% 1.88% 1.88% 1.88% 1.92% 1.92% 2.10% 2.03%

2 2.50% 2.50% 2.50% 2.51% 2.51% 2.57% 2.57% 2.86% 2.73%

2.5 3.12% 3.12% 3.12% 3.13% 3.13% 3.22% 3.21% 3.63% 3.41%

3 3.72% 3.72% 3.72% 3.74% 3.74% 3.86% 3.84% 4.40% 4.09%

3.5 4.31% 4.32% 4.32% 4.34% 4.34% 4.49% 4.46% 5.16% 4.73%

4 4.88% 4.89% 4.89% 4.91% 4.91% 5.10% 5.06% 5.90% 5.35%

2

0.5 0.62% 0.62% 0.62% 0.62% 0.62% 0.62% 0.62% 0.62% 0.62%

1 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25%

1.5 1.88% 1.88% 1.88% 1.88% 1.88% 1.88% 1.88% 1.88% 1.88%

2 2.50% 2.50% 2.50% 2.50% 2.50% 2.50% 2.50% 2.50% 2.50%

2.5 3.12% 3.12% 3.12% 3.12% 3.12% 3.12% 3.12% 3.12% 3.12%

3 3.72% 3.72% 3.72% 3.72% 3.72% 3.72% 3.72% 3.72% 3.72%

3.5 4.31% 4.31% 4.31% 4.31% 4.31% 4.31% 4.31% 4.31% 4.31%

4 4.88% 4.88% 4.88% 4.88% 4.88% 4.88% 4.88% 4.88% 4.88%

3

0.5 0.62% 0.62% 0.62% 0.62% 0.62% 0.61% 0.61% 0.57% 0.58%

1 1.25% 1.25% 1.25% 1.25% 1.25% 1.22% 1.22% 1.09% 1.14%

1.5 1.88% 1.87% 1.87% 1.87% 1.87% 1.82% 1.82% 1.58% 1.69%

2 2.50% 2.50% 2.50% 2.49% 2.49% 2.41% 2.42% 2.01% 2.23%

2.5 3.12% 3.11% 3.11% 3.10% 3.10% 2.98% 3.00% 2.41% 2.76%

3 3.72% 3.71% 3.71% 3.69% 3.69% 3.54% 3.57% 2.77% 3.29%

3.5 4.31% 4.30% 4.30% 4.27% 4.28% 4.08% 4.13% 3.10% 3.81%

4 4.88% 4.87% 4.87% 4.84% 4.84% 4.60% 4.67% 3.41% 4.33%
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Table 3: Comparison with other results in the literature, mutatis mutandis

Reference Model
Idiosyncratic

risk
Result

Related
result in

this paper

Mankiw (1986),
Proposition 1

Two-period economy
with two

equiprobable
aggregate states, two
idiosyncratic states,

and quadratic
Bernoulli function

With counter-
cyclical
variance

p = p̄.
Discussion in
Section 1.2

Mankiw (1986),
Proposition 2

Two-period economy
with two

equiprobable
aggregate states, two
idiosyncratic states,
and strictly prudent
Bernoulli function

With counter-
cyclical
variance

p > p̄
Theorem 1,
with η < 0.

Weil (1992),
Proposition 3

Two-period economy
with no aggregate
risk and DARA

Bernoulli function
for which −u′′′/u′′ is

decreasing

With a-cyclical
distribution

p > p̄
Theorem 3,
with η = 0.

Constantinides
and Duffie

(1996)

Infinite horizon
economy with

CRRA Bernoulli
function

With counter-
cyclical
variance

p > p̄.a
Theorem 3,
with η < 2.

Storesletten
et al. (2007)

OLG economy with
CRRA Bernoulli

function

With counter-
cyclical
variance

p ≈ p̄.b

Theorem 13,
compared

with Theorem
3 when η = 2.

Krueger and
Lustig (2010),

Proposition 3.1
and Theorem

4.2

Both two-period and
infinite horizon
economies with

CRRA Bernoulli
function

With
pro-cyclical
variance.c

p = p̄.d
Theorem 3,
with η = 2.

a “If, for example, the variance of the cross-sectional distribution of consumption growth increases in
economic downturns, [... a]n econometrician who does not take into account the consumer heterogeneity
[...] would be overestimating the risk aversion coefficient.” (p. 230).

b “[In comparison to the results of Constantinides and Duffie (1996), this model’s features] mitigate
the ability of idiosyncratic risk to account for the observed Sharpe ratio on US equity.” (p. 519).

c The conditional distribution of S/W is a-cyclical.
d Furthermore, by Proposition 4.2: “the equilibrium stochastic discount factor in the Arrow and the

Bond model [equals a constant times] the stochastic discount factor in the representative agent model.”
(p. 23).
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