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CHAPTER 12

DYNAMIC PROGRAMMING

In science, what is susceptible to proof must not be believed without proof.

— R. Dedekind (1887)

This chapter gives an introduction to the theory of dynamic optimization. The term
dynamic is used because the problems involve systems that evolve over time. Time is
measured by the number of whole periods (say weeks, quarters, or years) that have passed
since time 0, so we speak of discrete time. In this case, it is natural to study dynamical
systems whose development is governed by difference equations.

If the horizon is finite, dynamic optimization problems can be solved, in principle, using
classical calculus methods. There are, however, solution techniques that take advantage
of the special structure of discrete dynamic optimization problems. Section 12.1 intro-
duces a method that converts any, potentially very complicated, dynamic problem into an
equivalent series of much simpler problems. This nesting technique was given the name
dynamic programming by American mathematician Richard Bellman, who is credited with
its development. Section 12.2 gives a dynamic programming version of the Euler equation
used in continuous time control theory, which is much used in the economics literature.

Section 12.3 presents the fundamental result in dynamic programming with an infinite time
horizon, the Bellman equation. Section 12.4 offers an introduction to stochastic dynamic
programming, including the stochastic Euler equation, while the concluding section is
devoted to the important case of stationary problems with an infinite horizon.

When a discrete time dynamic optimization problem has restrictions on the terminal
values of the state variable, there is a discrete time version of the maximum principle
which may work better than dynamic programming. An appendix to this chapter sets
out the relevant discrete time maximum principle. This appendix also presents a brief
discussion of infinite horizon problems in this setting.

12.1 Dynamic Programming in Finite Horizon

Consider a system that changes at discrete times t = 0, 1, . . . , T . Suppose that the state
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of the system at time t is characterized by a real number xt.
1 Assume that the initial state

x0 is historically given, and that from then on the system evolves through time under the
influence of a sequence of controls ut.

2 The controls influence the evolution of the system
through a difference equation

xt+1 = gt(xt, ut), x0 given, ut ∈ Ut(xt), t = 0, . . . , T − 1. (1)

where, for each t, gt is a given function. Thus, we assume that the state of the system at
time t+ 1 depends on the time t, on the state xt in the preceding period t, and on ut, the
value chosen for the control at time t. Assume also that the set of controls that is feasible
at each period depends on the specific period and on the state. That is, suppose that at
time t, ut can be chosen freely from set Ut(xt), which is called the control region

Suppose that we choose values for u0, u1, . . . , uT−1. Then, Equation (1) immediately
gives x1 = g0(x0, u0). Since x1 is now determined, so too is x2 = g1(x1, u1), then x3 =
g2(x2, u2), and so on. In this way, (1) can be used to compute recursively the successive
states x1, x2, . . . , xT in terms of the initial state, x0, and the controls. In this way, each
choice of controls (u0, u1, . . . , uT−1) gives rise to a sequence of states (x1, x2, . . . , xT ). Let
us denote corresponding pairs (x0, . . . , xT ), (u0, . . . , uT ) by ({xt}, {ut}), and call them
admissible sequence pairs.

Different paths will usually have different utility or value for a given decision maker: the
problem assumes that in each time period, she enjoys a utility level that depends on the
state and the control in that period. The whole path is then assessed according to the
aggregate of these per-period utilities.3 Formally, assume that for each t there is a return
function ft(x, u) such that the utility associated with a given path is represented by the

sum
∑T
t=0 ft(xt, ut). This sum is called the objective function.4

For each admissible sequence pair the objective function then has a definite value. We
shall study the following problem: Among all admissible sequence pairs ({xt}, {ut}), find
one, denoted by ({x∗t }, {u∗t }), that makes the value of the objective function as large as
possible.

The admissible sequence pair ({x∗t }, {u∗t }) is called an optimal pair, and the correspond-
ing control sequence {u∗t }Tt=0 is called an optimal control.

The discrete time optimization problem can be formulated briefly as

max

T∑
t=0

ft(xt, ut) subject to xt+1 = gt(xt, ut), ut ∈ Ut(xt); x0 given. (2)

1For example, xt might be the quantity of grain that is stockpiled in a warehouse at time t.
2In the context of the example above, ut would be the quantity of grain removed from the stock at time t.
3Again, in the context of the example, ft(x, u) would be the net profit that the agent obtains from selling

quantity u, removed from stock x.
4The return function is often called performance, felicity or instantaneous utility function. The objective
function is often referred to as intertemporal utility function. The objective function is sometimes specified

as
∑T−1
t=0 ft(xt, ut) +S(xT ), where S measures the net value associated with the terminal period. This is

a special case in which fT (xT , uT ) = S(xT ), and S is often called a scrap value function.
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EXAMPLE 1: Let xt be an individual’s wealth at time t. At each time period t,
the individual has to decide what proportion, ut, of his wealth to consume, leaving the
remaining proportion for savings. Assume that wealth earns interest at the constant rate
ρ− 1 > 0 each period, so that her wealth is xt+1 = ρ(1− ut)xt at the beginning of period
t + 1. This equation holds for t = 0, . . . , T − 1, with x0 > 0 given. Suppose that the

utility of consuming c at time t is Wt(c). Then, the total utility is
∑T
t=0Wt(utxt), and

the problem facing the individual is

max

T∑
t=0

Wt(utxt) subject to xt+1 = ρ(1− ut)xt, ut ∈ [0, 1]; x0 given. (∗)

(See Problems 2, 3, and 8.) �

12.1.1 An Illustrative Problem.

Before giving the formal analysis of the technique developed by Bellman, it is useful to
present a simple application that will help us develop the intuition that lies behind the
formal analysis. Consider Figure 1.a, and suppose that each of the nodes in that graph
represents a city, and that the arrows represent one-way roads that connect these cities.
Suppose that a tractor salesman based in source city σ has to go on a sales trip that ends
at terminal city τ . Being a good salesperson, he will take this opportunity to sell his
tractors to farmers on the roads that he takes on the trip. The numbers that are next to
each arrow in the graph denote the number of tractors that our salesman would sell in
that part of his trip. His optimization problem is, then, to find the route that takes him
from σ to τ and maximizes the number of tractors he will sell on the trip.5
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1 Figure 1.a

Note that when he is at source σ, if he only looks at the tractors to be sold in the first leg
of the trip, he will chose to go to city β first. Of course, this short-sighted decision need
not be optimal: by choosing to go to β, he is ruling out the possibility of ever going to city
γ, and of selling tractors to farms that are in the roads that connect α with γ and with δ.
The salesman has to be more thoughtful. One possibility would be for him to consider all

5Remember that these roads are all one way, so he cannot loop around and cover all farms.
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possible combinations of cities and the resulting sales. But is there a better way to find
the optimal solution?

It turns out that our salesman can find his optimal route in a simpler way, requiring less
computations and obtaining more information than if he solved his problem by finding all
possible combinations. Instead of solving only the problem of going from σ to τ , all he
has to do, following Bellman’s intuition, is to solve a series of simpler problems, looking
at the best way to go from any city to τ , starting from those that are closest to τ .

Suppose that he finds himself at ζ. There are no options for him, and he will sell seven
tractors in the last leg of his trip. If he finds himself at η, there is nothing to decide and he
will sell two. These two subproblems were very easy to solve. If he finds himself at cities γ
or ε in the penultimate leg, his problems is equally simple, since he has no choices: from
γ he’ll have to go via ζ, selling 11 tractors in total; from ε, he’ll sell nine tractors going
via η. If he finds himself at δ, on the other hand, he has a decision to make—whether to
go via ζ or via η. His problem is slightly more complicated, for he has to consider the
tractors he will sell in the two remaining legs of his trip. Looking at that subproblem, it
is evident that the short-sighted decision to go via η would be a mistake: considering the
subsequent leg, he should go via ζ, selling 18 tractors in total.

Note that what we have done so far gives us the optimal routes the salesman should take
from any city in {δ, . . . , η} to τ . Now, suppose that he finds himself at α. He does have
a decision to make, and this decision will imply not only a number of sales made in the
immediate leg, but also will restrict the number of sales he will optimally make in the rest
of his trip. His problem now looks more complicated. But since he has already solved
the subproblems for all subsequent legs, he can be clever and reason his way to a simpler
problem. In particular, he knows that if he goes from α to δ, he will not choose to go to η
afterwards, so he can dismiss that route and make his problem simpler. Effectively, he can
use his previous reasoning of the optimal subsequent choices, to delete the pre-terminal
cities from his map, as in Figure 1.b.
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1 Figure 1.b

Looked at it in this new graph, the decision problem at α is much easier, and it is obvious
that he should go via δ, selling 26 tractors. If he were to start from β, it is also immediate
from Figure 1.b that the salesman would find it optimal to sell 20 tractors, going via δ.
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Now, let us consider the problem starting from σ. We have already solved the problems
starting from α and from β, and know that the optimal sale levels are 26 and 20 tractors
respectively. The sales person thus knows that he will not go to cities γ and ε, so that we
can delete these cities from the map and simply consider Figure 1.c.
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It is now clear that choosing to first go to β would have been a mistake, for the maximum
number of sales he would have been able to make afterwards would have limited his total
sales to 30 tractors. The best choice for the salesman is to go via α, thus making a total
of 31 sales on his way to τ .

Let us now cast this situation in the language of the general problem. There are four
legs to the salesman’s trip. For t = 1, . . . , 4, let xt represent the city where the he is
after the t-th leg. This city will be the state of the problem after that leg, and the
initial state is the source city, x0 = σ. At the beginning of the problem, he can choose
to go ‘up’ or ‘down’. These are the values of his control variable. If starting at σ he
goes up, he will start the next leg at α. In the general language, U1(σ) = {up,down},
g0(σ, up) = α, and g0(σ, down) = β. The sets of controls and the dynamics of the states
are constructed similarly from other cities, with care that U2(γ) = U3(ζ) = {down}, and
U2(ε) = U3(η) = {up},

The return function will be the tractors to be sold in each leg, as a function of where
the salesman begins that leg and what choice he makes. For instance, f0(up, σ) = 5 and
f1(down, α) = 8, as in Figure 1.d. The decision facing him is Problem (2).6
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6With the proviso that f4(τ) = 0.
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Our next step will be to present a general method for the solution of (2); we will then
point out how what we did in this section is just an application of that method.

12.1.2 The Value Function and its Properties.

Suppose that at time s < T the state of the system is x. The best that can be done in
the remaining periods is to choose us, us+1, . . . , uT , and thereby also xs+1, xs+2, . . . , xT ,

to maximize
∑T
t=s ft(xt, ut), with xs = x. We define the (optimal) value function for

the problem at time s < T by

Js(x) = max

T∑
t=s

ft(xt, ut) subject to xt+1 = gt(xt, ut), ut ∈ Ut(xt); xs = x, (3)

where we assume that the maximum is attained.7

At time T , if the state of the system is x, the best that can be done is simply to maximize
fT (u, x) by our choice of u. If such optimum exists, we define the value function at T as

JT (x) = max fT (x, u), subject to u ∈ UT (x). (4)

Two features in this construction are worth emphasizing. If Ut(x) is empty, then, we
will adopt the convention that the maximum over Ut(x) is set equal to −∞.8 Now, let
Xt(x0) denote the range of all possible values of the state xt that can be generated by
the difference equation (1), if we start in state x0 and then go through all possible values
of u0, u1, . . . , ut−1. Of course, only the values of Jt(x) for x ∈ Xt(x0) are relevant for the
domain of the value functions.

We now prove an important property of the value function. Suppose that at a particular
time s < T we find ourselves in state xs = x. What is the optimal choice for us? If we
choose us = u, then at time σ we obtain the immediate reward fs(x, u), and, according to
(3), the state at time s+ 1 will be xs+1 = gs(x, u). Using definition (3) again, the highest

attainable value of the total reward from time s+ 1 to time T ,
∑T
t=s+1 ft(xt, ut) starting

from the state xs+1, is Js+1(xs+1) = Js+1[gs(x, u)]. Hence, the best choice of the control
at time s must be a value of u that maximizes the sum

fs(x, u) + Js+1[gs(x, u)].

This leads to the following general result:

THEOREM 1 (Fundamental Equations of Dynamic Programming). For each
s = 0, 1, . . . , T − 1, let Js(x) be the value functions (3) for Problem (2). The sequence of
value functions satisfies the equations

Js(x) = max
u∈Us(x)

{fs(x, u) + Js+1[gs(x, u)]}, (5)

7This is true if, for example, the functions f and g are continuous and U is compact.
8Frequently, the set Ut(x) is determined by one or more inequalities of the form ht(x, u) ≤ 0, for some

continuous function ht.
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for s = 0, 1, . . . , T − 1.

Theorem 1 gives us the basic tool for solving dynamic optimization problems. It is used as
follows: First, find the function JT (x) by using its definition, (5). The maximizing value of
u depends (usually) on x, and is denoted by u∗T (x). The next step is to use (4) to determine
JT−1(x) and the corresponding maximizing control u∗T−1(x). Then, work backwards in
this manner to determine, recursively, all the value functions JT−2(x), . . . , J0(x) and the
maximizers u∗T−2(x), . . . , u∗0(x).

This allows us to construct the solution of the original optimization problem: Since the
state at t = 0 is x0, a best choice of u0 is u∗0(x0). After u∗0(x0) is found, the difference
equation in (1) determines the state at time 1 as x∗1 = g0[x0, u

∗
0(x0)]. Then, u∗1(x∗1) is a

best choice of u1, and this choice determines x∗2 by (1). Again, u∗2(x∗2) is a best choice of
u2, and so on.9

EXAMPLE 2: We can now use the example presented in Subsection 12.1.1 to illustrate
the recursive method of Theorem 1. Figure 1.d expressed the salesman problem in our
general notation. Our first step was to realize that J3(ζ) = f3(ζ,down), and J3(η) =
f3(η,up), as there were not choices available at that stage. Figure 2.a makes this explicit.
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It is easy to see, from Figure 2.a, that our equally simple solution to the problems facing
the salesman at cities γ and ε gave us that J2(γ) = f2(γ,down) + J3(ζ), and J2(ε) =
f2(ε, up) + J3(η). The interesting case was if he found himself at δ, for there he has a
decision to make. Recalling our analysis there, it is clear that

J2(δ) = max{f2(δ, up) + J3(ζ), f2(δ, down) + J3(η)}.

Then, we can delete the penultimate stage of the problem, as in Figure 2.b.

9If we minimize rather than maximize the sum in (2), then Theorem 1 holds with “max” replaced by

“min” in (3), (4) and (5). This is because minimizing f is equivalent to maximizing −f .
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Again, we now have that

J1(α) = max{f1(α,up) + J2(γ), f1(α,down) + J2(δ)},

and
J1(β) = max{f1(β,up) + J2(δ), f1(β,down) + J2(ε)},

which we can now introduce to Figure 2.c.
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Finally, we conclude that the solution to Problem (2) for the salesman is simply

J0(σ) = max{f0(σ, up) + J1(α), f0(σ, down) + J1(β)}.

EXAMPLE 3: Use Theorem 1 to solve the problem

max
3∑
t=0

(1 + xt − u2t ) subject to xt+1 = xt + ut, ut ∈ R; x0 = 0.

Solution: Here, the horizon is T = 3, while at all t the return function is ft(x, u) =
1 + x− u2 and the updating function is gt(x, u) = x+ u. Consider first Equation (5) and
note that J3(x) is the maximum value of 1 + x − u2 for u ∈ (−∞,∞). This maximum
value is obviously attained for u = 0. Hence, using the notation introduced in Theorem 1,

J3(x) = 1 + x, with u∗3(x) ≡ 0. (∗)
8



For s = 2, the function to be maximized in (4) is 1 + x − u2 + J3(x + u). Let us denote
this function by h2(u), and use the fact that (∗) implies that J3(x+ u) = 1 + (x+ u), to
get

h2(u) = 1 + x− u2 + 1 + (x+ u) = 2 + 2x+ u− u2.

Function h2 is concave in u, and h′2(u) = 1 − 2u, which vanishes for u = 1/2, so this is
the optimal choice of u. The maximum value of h2(u) is, thus,

h2( 1
2 ) = 2 + 2x+ 1

2 −
1
4 = 9

4 + 2x.

Hence,

J2(x) = 9
4 + 2x, with u∗2(x) ≡ 1

2 (∗∗)

For s = 1, the function to be maximized in (7) is given by h1(u) = 1 +x−u2 + J2(x+u).
Substituting from (∗∗) gives

h1(u) = 1 + x− u2 + 9
4 + 2(x+ u) = 13

4 + 3x+ 2u− u2.

Because h1 is concave and h′1(u) = 2− 2u, which is null for u = 1, the maximum value of
h1(u) is 13/4 + 3x+ 2− 1 = 17/4 + 3x. Hence,

J1(x) = 17
4 + 3x, with u∗1(x) ≡ 1 (∗∗∗)

Finally, for s = 0, the function to be maximized is h0(u) = 1 + x − u2 + J1(x + u).
Substituting from (∗∗∗) gives

h0(u) = 1 + x− u2 + 17
4 + 3(x+ u) = 21

4 + 4x+ 3u− u2.

Function h0 is concave and h′0(u) = 3 − 2u vanishes for u = 3/2, so the maximum value
of h0(u) is h0(3/2) = 21/4 + 4x+ 9/2− 9/4 = 15/2 + 4x. Thus,

J0(x) = 15
2 + 4x, with u∗0(x) ≡ 3

2

In this particular case, the optimal choice of the control each period is a constant, in-
dependent of the state. The corresponding optimal values of the state variables are
x1 = x0 + u0 = 3/2, x2 = x1 + u1 = 3/2 + 1 = 5/2, x3 = x2 + u2 = 5/2 + 1/2 = 3. The
maximum value of the objective function is 15/2. �

In principle, all deterministic finite horizon dynamic problems can be solved in an alter-
native way using ordinary calculus. But the method becomes very unwieldy if the horizon
T is large, and is usually hopelessly impractical for stochastic optimization problems of
the kind considered in Sections 12.4–12.5.

In the next example the terminal time is an arbitrary natural number, and the optimal
control turns out to be a specific function of the state of the system.
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EXAMPLE 4: Solve the following problem:

max

(
T−1∑
t=0

− 2
3utxt + lnxT

)
subject to xt+1 = xt(1 + utxt), ut ≥ 0; x0 > 0. (7)

Solution: Because x0 > 0 and ut ≥ 0, we have xt > 0 for all t. Now, fT (x, u) = lnx is
independent of u, so JT (x) = lnx, and any uT is optimal.

Next, putting s = T − 1 in (4) yields

JT−1(x) = max
u≥0

{
− 2

3ux+ JT [x(1 + ux)]
}

= max
u≥0

[
− 2

3ux+ lnx+ ln(1 + ux)
]
.

The maximum of the concave function h(u) = − 2
3ux + lnx + ln(1 + ux) is at the point

where its derivative is 0. This gives h′(u) = − 2
3x + x/(1 + ux) = 0, or, since x > 0,

u = 1/2x. Then h(1/2x) = lnx − 1/3 + ln(3/2). Hence, JT−1(x) = h(1/2x) = lnx + C,
with C = −1/3 + ln(3/2), and u∗T−1(x) = 1/2x.

The next step is to use (4) for s = T − 2:

JT−2(x) = max
u≥0

{
− 2

3ux+ JT−1[x(1 + ux)]
}

= max
u≥0

[
− 2

3ux+ lnx+ ln(1 + ux) + C
]

Again, u = u∗T−2(x) = 1/2x gives the maximum because the first-order condition is the
same, and we get JT−2(x) = lnx + 2C, with C = −1/3 + ln(3/2), and u∗T−2(x) = 1/2x.
This pattern continues and so, for k = 0, 1, . . . , T , we get JT−k(x) = lnx + kC, with
C = −1/3 + ln(3/2) and u∗T−k(x) = 1/2x.

So far we have been working backwards from time T to time 0. Putting t = T − k for
each k, we find that Jt(x) = lnx + (T − t)C and u∗2 = 1/2x for t = 0, 1, . . . , T . Finally,
inserting u∗t = 1/2x∗t in the difference equation gives x∗t+1 = (3

2 )x∗t . So x∗t = (3
2 )tx0, with

ūt = ( 2
3 )t
/

2x0 as optimal control values. �

In the above formulation, the state x and the control u may well be vectors, in say Rn and
Rr, respectively. Then g must be a vector function as well, and the difference equation
is a system of difference equations, one for each component of x. No changes are then
needed in Theorem 1, except that we would use boldface letters for x, u, and g.

Controls ut(x) that depend on the state x of the system are called closed-loop controls,
whereas controls ut that only depend on time are called open-loop controls.10 Given
the initial state x0 and a sequence of closed-loop controls u∗t (x), the evolution of the state
xt is uniquely determined by the difference equation

xt+1 = gt(xt, ut(xt)), x0 given. (∗)

10Except in rare special cases, the controls u∗s , u
∗
s+1, . . . , u

∗
T that yield the maximum value Js(x) in (3)

do depend on x. In particular, the first control does so, and determining the functions Js(x) defined in
(3) requires finding optimal closed-loop controls u∗s(x), for s = 0, 1, . . . , T .
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Let us denote by ūt = ut(xt) the control values (numbers) generated by this particular
sequence of states {xt}. Next insert these numbers ūt into the difference equation:

xt+1 = gt(xt, ūt), x0 given (∗∗)

This, obviously, has exactly the same solution as equation (∗).

Hence, we get the same result whether we insert the closed-loop controls u∗t (x) or the
equivalent open-loop controls ūt. In fact, once we have used the closed-loop controls to
calculate the equivalent open-loop controls, it would seem that we can forget about the
former. It may nevertheless be useful not to forget entirely the form of each closed-loop
control. For suppose that at some time τ , there is a disturbance to the state x∗τ obtained
from the difference equation, which has the effect of changing the state to x̂τ . Then u∗τ (x̂τ )
still gives the optimal control to be used at that time, provided we assume that no further
disturbances will occur.

EXAMPLE 5: Consider the problem of an investor with planning horizon T and initial
wealth x0 > 0. Let xt denote the value of the investor’s assets at time t, and let ut be his
consumption. Suppose that the interest rate on this assets is it ≥ 0 at time t, so that so
that xt+1 = (1 + it)(xt − ut).

The utility associated with a level of consumption u at any one period is u1−γ , where
γ ∈ (0, 1), and the investor wants to maximize the present value of the flow of utility
from consumption. Define β = 1/(1 + r), where r is the rate of discount. The investor’s
problem is, thus,

max

T∑
t=0

βtu1−γt subject to xt+1 = at(xt − ut), ut ∈ [0, xt],

where, for simplicity of notation, at = 1 + it.

Solution: We apply Theorem 1, with the control region Ut(x) = [0, x] and ft(x, u) =
βtu1−γ for t = 0, 1, . . . , T . By definition,

JT (x) = max
u∈[0,x]

βTu1−γ = βTx1−γ , (i)

and u∗T (x) = x is optimal. Moreover, Equation (4) yields

Js(x) = max
u∈[0,x]

{
βsu1−γ + Js+1[as(x− u)]

}
. (ii)

In particular, (i) gives JT (aT−1(x− u)) = βTa1−γT−1(x− u)1−γ , so

JT−1(x) = βT−1 max
u∈[0,x]

[u1−γ + βa1−γT−1(x− u)1−γ ]. (iii)

Let h(u) = u1−γ + cγ(x− u)1−γ denote the maximand in (iii), where cγ = βa1−γT−1. Then,

h′(u) = (1−γ)u−γ−(1−γ)cγ(x−u)−γ = 0 when u−γ = cγ(x−u)−γ and so u = (x−u)/c.
11



Because γ ∈ (0, 1) and cγ > 0, the function h is easily seen to be concave, so the critical
value of u does maximize h(u). This implies that

u∗T−1(x) =
x

w
, where w = 1 + c = 1 + (βa1−γT−1)

1/γ
= C

1/γ
T−1. (iv)

for a suitably defined constant CT−1. Then, because βa1−γT−1 = cγ = (w − 1)γ , choosing
the value x/w of uT−1 gives

h(x/w) = x1−γwγ−1 + (w − 1)γ [x(1− w−1)]1−γ

= x1−γ [wγ−1 + (w − 1)γ(w − 1)1−γ/w1−γ ]

= x1−γwγ

= x1−γCT−1

Hence, by (iv), JT−1(x) = βT−1CT−1x
1−γ .11 Next, substitute s = T − 2 in (ii) to get:

JT−2(x) = βT−2 max
u∈[0,x]

[u1−γ + βCT−1a
1−γ
T−2(x− u)

1−γ
].

Comparing this function with (iii), from (iv) we see that the maximum value is at

u∗T−2(x) = x/C
1/γ
T−2, where C

1/γ
T−2 = 1+(βCT−1a

1−γ
T−2)1/γ , so that JT−2(x) = βT−2CT−2x

1−γ .

We can go backwards repeatedly in this way and, for every t, obtain Jt(x) = βtCtx
1−γ .

From (i), we can let CT = 1, while Ct for t < T is determined by backward recursion
using the first-order difference equation

C
1/γ
t = 1 + (βCt+1a

1−γ
t )1/γ = 1 + (βa1−γt )1/γC

1/γ
t+1 (v)

that is linear in C
1/γ
t . The optimal control is u∗t (x) = x/C

1/γ
t , for all t = 0, 1, . . . , T − 1,

while we find the optimal path by successively inserting u∗t , into the difference equation
for xt+1.

We can obtain an explicit solution in the special case when at = a for all t. Then (v)

reduces to C
1/γ
t+1 − C

1/γ
t /ω = −1/ω, where ω = (βa1−γ)1/γ . This is a first-order linear

difference equation with constant coefficients. Using CT = 1, and solving the equation for

C
1/γ
t , we obtain

C
1/γ
t = ωT−t +

1− ωT−t

1− ω

for t = T, T − 1, . . . , 0. �

11Notice that JT−1 has the same functional form as JT .
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Problems:

(1) Consider the problem

max
2∑
t=0

[
1− (x2t + 2u2t )

]
, subject to xt+1 = xt − ut;x0 = 5 (∗)

where ut can take any value in R.

(a) Use Theorem 1 to solve the problem.

(b) Use the difference equation in (∗) to compute x1 and x2 in terms of u0 and u1,
and find the sum in (∗) as a function S of u0, u1, and u2. Next, maximize this
function.

(2) Consider Problem (∗) in Example 1. Suppose that the utility function is Wt(ct) =
(1 + r)−t

√
ct, and that x0 > 0.12 Compute Js and u∗s, for s = T, T − 1, T − 2.

(3) Consider Problem (∗) in Example 1. Suppose that Wt(ct) = (1 + r)−tct and x0 > 0.
Compute JT , u∗T , JT−1, and u∗T−1, for x ≥ 0. Prove that there exist constants Ps,
which may depend on ρ and r, such that Js(x) = Psx for s = 0, 1, . . . , T . Find J0
and u∗s, for s = 0, . . . , T .

(4) Consider the problem

max
T∑
t=0

(3− ut)x2t subject to xt+1 = utxt, ut ∈ [0, 1]; x0 given

(a) Compute the value functions JT , JT−1, and JT−2, and the corresponding control
functions, u∗T , u∗T−1, and u∗T−2.

(b) Find an expression for JT−n(x), for n = 0, 1, . . . , T , and the corresponding opti-
mal controls.

(5) Given x0 > 0, solve the problem

max

[
T−1∑
t=0

(
− 2

3ut
)

+ lnxT

]
subject to xt+1 = xt(1 + ut), ut ∈ [0, 1]

(6) Consider the problem

max
T∑
t=0

(xt − u2t ) subject to xt+1 = 2(xt + ut); x0 = 0

(a) Write down its fundamental equations.

12As in Example 4, r denotes the rate of discount.
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(b) Prove that the value function for the problem is given by

JT−n(x) = (2n+1 − 1)x+

n∑
j=0

(2j − 1)2

for each n = 0, 1, . . . , T .

(c) Find optimal controls ut = u∗t and the maximum value V = J0(0).

(7) Given positive constants α and γ, consider the problem

max

[
T−1∑
t=0

(−e−γut)− αe−γxT

]
subject to xt+1 = 2xt − ut; x0 given

where ut can take any value in R.

(a) Compute JT , JT−1, and JT−2.

(b) Prove that Jt can be written in the form Jt(x) = −αte−γx, and find a difference
equation for αt.

(8) Consider the special case of Problem 2 where r = 0.

(a) Compute JT , JT−1, and JT−2.13

(b) Show that the optimal control function is

us(x) =
1

1 + ρ+ ρ2 + · · ·+ ρT−s
,

and find the corresponding Js(x), s = 1, 2, . . . , T .

12.2 The Euler Equation

The economics literature sometimes considers the following formulation of the basic dy-
namic programming problem, without any explicit control variable (e.g. Stokey et al.
(1989)):

max
T∑
t=0

Ft(xt, xt+1), subject to xt ∈ R; x0 given. (8)

That is, instead of making explicit a control, in this formulation the instantaneous reward
Ft(xt, xt+1) at time t depends on t and on the values of the state variable at adjacent
times t and t+ 1.

If we define ut = xt+1, then (8) becomes a standard dynamic programming problem
with U = R. On the other hand, the dynamic optimization Problem (2) can usually be

13Hint: Consider the function [
√
u + A

√
1− u], defined for u ∈ [0, 1]. Prove that this function is

maximized at u = 1/(1 +A2), where its value is
√

1 +A2.
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formulated as a problem of the type (8).14 To see this, let ut be a value of u ∈ U that
maximizes ft(xt, u) subject to the constraint that gt(xt, u) = xt+1, and define Ft(xt, xt+1)
as the maximum value of this problem. That is, define

Ft(xt, xt+1) = max
u

ft(xt, u) subject to xt+1 = gt(xt, u), u ∈ U. (9)

Now, let (x∗0, . . . , x
∗
T+1) be an optimal solution of problem (8).15 Then, (x∗1, . . . , x

∗
T+1) is

a maximum point for the objective function

S(x1, . . . , xT+1) =

T∑
t=0

Ft(xt, xt+1),

and by the usual first-order condition we must have S′t(x
∗
1, . . . , x

∗
T+1) = 0 for t = 1, . . . ,

T + 1. Hence, (x∗1, . . . , x
∗
T+1) must satisfy the Euler equations:

∂Ft
∂xt

(xt, xt+1) +
∂Ft−1
∂xt

(xt−1, xt) = 0, for t = 1, . . . , T, (10)

and
∂FT
∂xT+1

(xT , xT+1) = 0. (11)

Note that (10) is a second-order difference equation analogous to the Euler equation in
the classical calculus of variations (see Section 8.2).16

EXAMPLE 6: Consider the problem

max

(
T−1∑
t=0

ln ct + lnxT

)
subject to xt+1 = α(xt − ct);x0 given.

Here xt is wealth at time t, while ct is the amount subtracted for consumption, and the
remaining amount xt − ct is deposited in an account and increases to xt+1 = α(xt − ct)
at time t+ 1, where α > 1.

Formulate the problem without explicit control variables, and use the Euler equation to
solve it.

Solution: Define β = 1/α. Because ct = xt − βxt+1, the formulation without explicit
control variables is

max

[
T−1∑
t=0

ln(xt − βxt+1) + lnxT

]
. (∗)

14If, in particular, for every choice of xt and xt+1 the equation xt+1 = gt(xt, ut) has a unique solution

ut ∈ U , denote this solution by ut = ϕt(xt, xt+1). Now, define Ft(xt, xt+1) = ft(xt, ϕt(xt, xt+1)) for

t < T , and FT (xT , xT+1) = maxu∈U fT (xT , u). Then, Problem (2) becomes precisely the same as
Problem (8).
15Remember that x0 is given, and denote x∗0 = x0.
16Note carefully that the partial derivatives in (10) are evaluated at different pairs. Note also that if xT+1

does not appear explicitly in FT (xT , xT+1), Equation (11) becomes trivial.
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For t = T , the Euler equation (10) is:17

∂FT
∂xT

(xT , xT+1) +
∂FT−1
∂xT

(xT−1, xT ) = 0.

With FT (xT , xT+1) = lnxT and FT−1(xT−1, xT ) = ln(xT−1 − βxT ), the Euler equation
reduces to

1

xT
− β

xT−1 − βxT
= 0,

so xT−1 = 2βxT .

For t = 1, 2, . . . , T − 1, with Ft(xt, xT+1) = ln(xt − βxT+1), (10) gives

1

xt − βxt+1
− β

xt−1 − βxt
= 0.

Solving this for xt−1 gives the (reverse) second-order difference equation xt−1 = 2βxt −
β2xt+1. In particular, for t = T − 2 this gives xT−2 = 2βxT−1 − β2xT = 4β2xT −
β2xT = 3β2xT . More generally, given xT and xT−1 = 2βxT , one can show that xt =
(T + 1 − t)βT−txT , by backward induction. This implies that x0 = (T + 1)βTxT , so
xT = x0β

−T /(T + 1). We thus conclude that the optimal solution of the problem is

x∗t =
T + 1− t
T + 1

β−tx0, c∗t = x∗t − βx∗t+1 =
β−tx0
T + 1

.

We see that optimal consumption is steadily decreasing as t increases. �

A general solution procedure for problem (8) is similar to that used in Section 12.1.18 It
uses the Euler equations (10) and (11) recursively backwards in the following manner:19

17One might prefer to equate the partial derivatives of the maximand in (∗) to 0 directly, rather than

introducing the function F . In particular, equating the partial derivative with respect to xT to 0 yields

−
β

xT−1 − βxT
+

1

xT
= 0

again; equating each partial derivative with respect to xt to 0 yields

−
β

xt−1 − βxt
+

1

xt − βxt+1
= 0,

for t = 1, 2, . . . , T − 1.
18In Example 6 above, we used a different approach.
19In terms of the equations, the procedure is: first, solve XT+1 from

∂FT

∂xT+1
(xT , xT+1) = 0;

second, solve xT from
∂FT

∂xT
[xT , x

∗
T+1(xT )] +

∂FT−1

∂xT
(xT−1, xT ) = 0;
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(1) Use (11) to find xT+1 as a function of xT , denoted by x∗T+1(xT ).

(2) Insert x∗T+1(xT ) for xT+1 in (10) for t = T , and use this equation to find xT as a
function x∗T (xT−1) of xT−1.

(3) Insert x∗T (xT−1) for xT in in (10) for t = T − 1 and use this equation to find xT−1 as
a function x∗T−1(xT−2) of xT−2.

(4) Continue this backward recursion until x∗1(x0) has been found.

(5) Since x0 is given, one can work forward to determine first x1 = x∗1(x0), then x2 =
x∗2(x1), and so on..

Problems:

(1) Consider Problem 12.1.1.

(a) Transform this problem to the form (8).

(b) Derive the corresponding Euler equation, and find its solution. Compare with
the answer to Problem 12.1.1.

(2) Consider the problem in Example 12.1.4.

(a) Transform this problem to the form (8).

(b) Derive the corresponding Euler equation, and find its solution. Compare with
the answer to in Example 12.1.4.

12.3 Infinite Horizon

Economists often study dynamic optimization problems over an infinite horizon. This
avoids the need to specify what happens after a finite horizon is reached. It also avoids
having the horizon as an extra exogenous variable that features in the solution.

This section considers how dynamic programming methods can be used to study the
following infinite horizon version of the problem set out in (2):

max
∞∑
t=0

βtf(xt, ut) subject to xt+1 = g(xt, ut), ut ∈ U(x);x0 given, (12)

where U ⊆ R is given. Here, f and g are given functions, independent of t, and there is a
constant discount factor β ∈ (0, 1).20 Note that, apart from replacing the horizon T by∞

third, solve xT−1 from

∂FT−1

∂xT−1
[xT−1, x

∗
T (xT−1)] +

∂FT−2

∂xT−1
(xT−2, xT−1) = 0;

and so on.
20 As pointed out in the case of finite horizon, the same theory applies without change when xt, ut, and
g are vector functions. Having β ∈ (0, 1) is essential for the subsequent analysis of the problem in this

section.
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as the upper limit of the sum, the two functions ft(xt, ut) and gt(xt, ut) in (2) have been
replaced by βtf(xt, ut) and g(xt, ut) respectively. Because neither the new function f nor
g depends explicitly on t, Problem (12) is called autonomous or stationary.

The sequence pair ({xt}, {ut}) is called admissible provided that each control satisfies
ut ∈ U(xt), the initial state x0 has the given value, and the difference equation in the
problem is satisfied for all t.

For simplicity, we begin by assuming that f satisfies the following boundedness condi-
tion:21 there exist numbers M1 and M2 such that

M1 ≤ f(x, u) ≤M2 for all (x, u) with u ∈ U(x) (13)

Because 0 < β < 1, the sum in (12) will then always converge.

For any given starting time s, with s = 0, 1, 2, . . . , and any given state x at that time,
take any control sequence ~us = {us, us+1, . . . }, where ut ∈ U for all t ≥ s. The successive
states generated by this control sequence are found by letting xt+1 = g(xt, ut), with xs = x.
With this notation, the discounted sum of the infinite utility (or benefit) sequence that is
obtained from applying the control sequence ~us, starting from state x at time s, is

Vs(x, ~us) =
∞∑
t=s

βtf(xt, ut) (14)

It is convenient to also define the value of that sum discounted back only to time s, namely

V s(x, ~us) =

∞∑
t=s

βt−sf(xt, ut) (15)

It is immediate that Vs(x, ~us) = βsV s(x, ~us). Now let

Js(x) = max
~us

V s(x, ~us) (16)

where for each s the maximum is taken over all sequences ~us = {us, us+1, . . . } with
us+k ∈ U(xs+k).22 If we define Js(x) = βsJs(x), we have the maximum total discounted
utility (or benefit) that can be obtained over all the periods t ≥ s, given that the system
starts in state x at time s. It is immediate that

Js(x) = max
~us

Vs(x, ~us) (17)

Note next that function Js(x) satisfies the following important property.

21It suffices to assume that this condition holds for all x in X(x0) = ∪∞t=0Xt(x0), where Xt(x0) is defined

in 12.1.2.
22 The existence of this maximum is discussed later in Note (REF?). Note that function Js(x) need only

be defined on Xs(x0).
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LEMMA 1. For each period s = 0, . . . , let Js be defined as in (17). For any s,

J0(x) = Js(x) (18)

The intuition of this lemma is that, because the problem is autonomous and we start in
the same state x, the future looks exactly the same at either time 0 or time s.23 In other
words, finding either Js(x) = max~us

V s(x, ~us) or J0(x) = max~u0
V 0(x, ~u0) requires solving

essentially the same optimization problem, which therefore gives the same maximum value
in each case. Importantly, the definition of function Js and Equation (18) together imply
that

Js(x) = βsJ0(x) (19)

Now, define
J(x) = J0(x) = J0(x) (20)

We call function J(x) the optimal value function, or, more simply, the value function
for problem (12). This function contains all the information one needs, for (19) implies
that if we know J(x), then we know Js(x) for all s. Moreover, the main result in this
section is the following property of the value function.

THEOREM 2 (Fundamental Equation of Dynamic Programming). The value
function of Problem (12), J(x), satisfies the equation

J(x) = max
u∈U(x)

{f(x, u) + βJ [g(x, u)]}. (The Bellman equation)

A rough argument for Theorem 2 resembles the argument for Theorem 1: Suppose we
start in state x at time 0. If we choose the control u, the immediate reward is β0f(x, u) =
f(x, u), and at time 1 we move to state x1 = g(x, u). Choosing an optimal control
sequence from time 1 on gives a total reward over all subsequent periods that equals
J1(g(x, u)) = βJ(g(x, u)). Hence, the best choice of u at 0 is one that maximizes the sum
f(x, u) + βJ(g(x, u)). The maximum of this sum is therefore J(x).

23Formally, let x be any fixed state and consider any policy sequence ~us = {us, us+1, . . . } that starts
at time s, and define the corresponding sequence ~u0s = {u00, u01, . . . } shifted earlier so that it starts at

time 0 instead of at time s: let u0t = us+t for all t. Then, given the same starting state x, if xt and

x0t denote the states reached at time t by following ~us and ~u0s starting at times s and 0 respectively, it

follows by construction that x0t = xs+t and, hence, that f(x0t , u
0
t ) = f(xs+t, us+t). It follows from (16)

that V 0(x, ~u0s) = V s(x, ~us). But every shifted admissible policy ~u0s is also admissible at time 0, so we can

use (17) to conclude that

J0(x) = max
~u0

V 0(x, ~u0) ≥ V 0(x, ~u0s) = max
~us

V s(x, ~us) = Js(x).

By an identical argument, one can conclude that J0(x) ≤ Js(x), and hence that J0(x) = Js(x).
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EXAMPLE 7: Consider the infinite horizon analogue of Example 5, in the case when
the interest rate is constant, so that at = a for all t. Introduce a new control v defined
by u = vx, so that v represents the proportion of wealth x that is spent in the current
period. Under this change the former constraint u ∈ (0, x) is replaced by v ∈ (0, 1), and
the problem becomes

max

∞∑
t=0

βt(vtxt)
1−γ subject to xt+1 = a(1− vt)xt, vt ∈ (0, 1). (i)

where a and x0 are positive constants, β ∈ (0, 1), γ ∈ (0, 1), and βa1−γ < 1.24

Solution: In the notation of Problem (12), we have f(x, v) = (vx)1−γ and g(x, v) =
a(1− v)x. Thee Bellman equation therefore yields

J(x) = max
v∈(0,1)

{(vx)1−γ + βJ [a(1− v)x]}. (ii)

In the problem in Example 5, the value function was proportional to x1−γ , so a reasonable
guess in the present case is that J(x) = kx1−γ for some positive constant k. We try this
as a solution, with the constant k as the only unknown. Then, after cancelling the factor
x1−γ , Equation (ii) reduces to the equality

k = max
v∈(0,1)

ϕ(v), (iii)

where
ϕ(v) = v1−γ + βka1−γ(1− v)1−γ

is defined on the interval [0, 1]. Note that ϕ(v) is the sum of two functions that are concave
in v. A helpful trick is to define the new constant ρ > 0 so that βa1−γ = ργ , and therefore
ϕ(v) = v1−γ + kργ(1− v)1−γ . The first-order condition for maximizing ϕ is, then,

ϕ′(v) = (1− γ)v−γ − (1− γ)kργ(1− v)−γ = 0,

implying that v−γ = kργ(1− v)−γ . Raising each side to the power −1/γ and then solving
for v, we see that the maximum of ϕ is attained at

v =
1

1 + ρk1/γ
, where ρ = (βa1−γ)1/γ . (iv)

Now, Equation (iii) implies that k satisfies the equation

k =
1

(1 + ρk1/γ)1−γ
+ kργ

ρ1−γk(1−γ)/γ

(1 + ρk1/γ)1−γ
= (1 + ρk1/γ)γ

24Because the horizon is infinite, we may think of xt as the assets of some institution like a university or

a government that suffers from “immortality illusion” and so regards itself as timeless.
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Raising each side to the power 1/γ and solving for k1/γ yields k1/γ = 1/(1 − ρ), or
k = (1 − ρ)−γ . Inserting this into (iv) gives v = 1 − ρ, so ρ is the constant fraction of
current assets that are saved in each period. Because J(x) = kx1−γ , we have

J(x) = (1− ρ)−γx1−γ , with v = 1− ρ, where ρ = (βa1−γ)1/γ (v)

Note that ρ increases with the discount factor β and with the return a to saving, as an
economist would expect.25 �

Whenever we wrote “max” above, it was implicitly assumed that the maximum exists.
Of course, without further conditions on the system, this need not be true. Under the
boundedness condition (13), the same assumptions as in the finite horizon case, namely
that f and g are continuous and U is compact, do ensure that the maximum in (17) and
in the right-hand side of the Bellman equation both exist.

Many economic applications, however, do not satisfy the boundedness condition, so it
is important to us investigate what happens when we use the supremum instead of the
maximum in Equation (17), as well as when the set U(x) depends on x. In fact, suppose
that

∑∞
t=0 β

tf(xt, ut) always exists.26. Then, J0(x0) = sup~u0
V0(x0, ~u0) must exist. By

the result (A.4.7) on iterated suprema, we have

J0(x0) = sup
~u0

∞∑
t=0

βtf(xt, ut)

= sup
u0∈U(x)

[f(x0, u0) + sup
~u1

∞∑
t=1

βtf(xt, ut)]

= sup
u0∈U(x)

[f(x0, u0) + J1(g(x0, u0))]

= sup
u0∈U(x)

[f(x0, u0) + βJ0(g(x0, u0))].

25In this example, the boundedness condition (13) is not valid without a simple transformation. Note that

atx0 is the maximum wealth the consumer could have accumulated by time t by spending nothing (i.e. if

vs = 0 for s ≤ t−1. Now define the modified state variable yt = xt/(x0at), which is the proportion of this
maximum wealth that remains. Obviously y0 = 1, and yt satisfies the difference equation yt+1 = (1−vt)yt,
so 1 ≥ y1 · · · yt ≥ yt+1 ≥ · · · ≥ 0. The new objective function is

∞∑
t=0

β̂t(x0vtyt)
1−γ = (x0)1−γ

∞∑
t=0

β̂t(vtyt)
1−γ

where β̂ = βa1−γ and so 0 < β̂ < 1. Using the results above for β and a replaced by β̂ and 1, the

maximum value Ĵ(y) of the sum is Ĵ(y) = (1 − ρ̂)−γy1−γ , with v = 1 − ρ̂ and ρ̂ = β̂1/γ = ρ. The
transformed problem satisfies the restricted boundedness condition in footnote 21, because the modified

state yt remains within the interval [0, 1] for all t, and so 0 ≤ (x0ytvt)1−γ ≤ x1−γ0 for all t and for all vt
in [0, 1]. This implies that the control v defined in (iv) really is optimal and the transformed problem is
solved. So is the original problem, of course.
26albeit possibly with an infinite value
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So the modification
J(x) = sup

u∈U(x)

{f(x, u) + βJ [g(x, u)]} (21)

of the Bellman equation still holds even if no maximum exists.

We call the Bellman equation a “functional equation” because the unknown is the function
J that appears on both sides. A natural question to ask is whether this equation has a
unique solution. Importantly, under the boundedness condition (13), together with the
assumptions that the maximum in the right-hand side of the Bellman equation is attained
and that 0 < β < 1, the equation always has one and only one bounded solution Ĵ , which
must therefore be the optimal value function for the problem. The value u(x) of the
control u ∈ U that maximizes the right-hand side of the Bellman equation is the optimal
control, which is therefore independent of t.

In general, it is difficult to use the Bellman equation to find J(x). The reason is that the
maximand in its right-hand side involves the unknown function J . Next, let us use the
contraction mapping theorem 14.3.1 to prove that Equation (21) has a unique solution.
Define the operator T on the domain B of all bounded functions I(x) so that

T (I)(x) = sup
u∈U(x)

{f(x, u) + βI[g(x, u)]} (∗∗)

for all I and all x. As in Section 14.3, the distance between any two bounded functions J̃
and J̄ is defined as d(J̃ , J̄) = supz |J̃(z)− J̄(z)|. Then,

T (J̃)(x) = sup
u∈U(x)

{f(x, u) + βJ̄(g(x, u)) + β[J̃(g(x, u))− J̄(g(x, u))]}

≤ sup
u∈U(x)

[f(x, u) + βJ̄(g(x, u)) + βd(J̃ , J̄)]

= T (J̄)(x) + βd(J̃ , J̄).

Symmetrically, T (J̄)(x) ≤ T (J̃)(x)+βd(J̃ , J̄), so |T (J̃)(x)−T (J̄)(x)| ≤ βd(J̃ , J̄), implying
that

d[T (J̃), T (J̄)] = sup
x
|T (J̃)(x)− T (J̄)(x)| ≤ βd(J̃ , J̄). (∗∗∗)

Because 0 < β < 1, this confirms that T is a contraction mapping, so the proof is complete.

Finally, we check that any control u = û that yields a maximum in the Bellman equation
(21) is optimal. To see this, let T û be the operator on B defined by (∗∗) when U(x) takes
the form {û(x)}.27 By definition of û, the unique solution J of the Bellman equation
satisfies T û(J) = J . Because the optimal value function satisfies the Bellman equation,
this unique solution equals the optimal value function. Also, because J û satisfies (∗) for
U(x) = {û(x)}, we have T û(J û) = J û. But T û, like T itself, is a contraction mapping,

so T û(J̃) = J̃ has a unique solution. It follows that J = J û. Hence the optimal value
function J(x) equals the criterion value obtained by following the control policy û.

27Leaving no choice except u = û(x).
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Problems:

(1) Consider the problem

max

∞∑
t=0

βt(−e−ut − 1
2e
−xt) subject to xt+1 = 2xt − ut, ut ∈ R; x0 given,

where β ∈ (0, 1). Find a constant α > 0 such that J(x) = −αe−x solves the Bellman
equation, and show that α is unique.

(2) Consider the following problem, with β ∈ (0, 1):

max
∞∑
t=0

βt(− 2
3x

2
t − u2t ) subject to xt+1 = xt + ut, ut ∈ R; x0 given.

(a) Suppose that J(x) = −αx2 solves the Bellman equation. Find a quadratic equa-
tion for α. Then, find the associated value of u∗.

(b) By looking at the objective function, show that, given any starting value x0, it
is reasonable to ignore any policy that fails to satisfy both |xt| ≤ |xt−1| and
|ut| ≤ |xt−1| for all t. Does footnote 21 then apply?

12.4 Stochastic Dynamic Programming

In the previous sections of this chapter, we have assumed that the state evolves according
to a deterministic difference equation: given the state and the control at period t, the
value of the state at period t+ 1 is completely determined. Some of the most important
problems in economics, however, are not amenable to such an assumption. Instead we
must allow the possibility that, even given the state and the control in period t, the state
in period t+1 is also influenced by stochastic shocks, so that it becomes a random variable.

Following common practice in economics and statistics, we use capital letters to denote
random variables, and reserve the corresponding lower case letter for values that the
random variable can take; for example Xt will denote the state at date t, whereas xt
denotes a realization of Xt. For simplicity, we concentrate on the one-dimensional case, so
we assume that Xt takes values on R, and that ut is required to belong to a given subset
U of R.

We use subscripts to denote the value of a variable at a date, and superscripts to
denote the historical sequence of values of the same variable up to that date. Specifically,
for t = 0, 1, . . . , T ,

xt = (x0, x1, x2, . . . xt).

Unlike in the previous sections, then, the evolution of {Xt} is not governed simply
by a differential equation. Instead, we will assume that the history of realizations and
controls, up to a period, determines the probability distribution of the control variable for
the next period. Specifically, we consider two cases:
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(1) Discrete state. We can assume that Xt+1 is a random variable that takes values in a
finite set X ⊂ R. It is assumed that the probability that Xt+1 = x ∈ X may depend
on the history of states up to period t and of the control in that period, and is given
by the function Pt+1(x, xt, ut).

(2) Absolutely continuous state. In this case, we assume that Xt+1 takes values in X ⊂ R,
and assume that the probability that Xt+1 ≤ x ∈ R is given by

Pt+1(x, xt, ut) =

∫ x

−∞
pt+1(v, xt, ut) dv,

for some density function pt+1. As before, the density function, and hence the prob-
ability distribution function, have (xt, ut) as arguments.

EXAMPLE 1: Consider first a two-stage decision problem, and assume that one wants
to maximize the objective function

f0(x0, u0) + E[f1(X1, u1)], (∗)

where ft(xt, ut) denotes some instantaneous reward function and E denotes the expecta-
tion operator. The initial state x0 is given, after which X1 is determined randomly using
the distribution P1(·, x0, u0).

We can find the maximum by first maximizing with respect to u1, and then with
respect to u0. When choosing u1, we assume an arbitrary value of x1, and simply maximize
the reward f1(x1, u1), assuming that X1 = x1 is known before the maximization is carried
out. The maximum point u∗1 is a function of the assumed state x1. Inserting this function
instead of u1 into the objective function (∗), and then replacing x1 by X1 yields

f0(x0, u0) + E[f1(X1, u
∗
1(X1))]. (∗∗)

A maximizing value of u0 is then chosen, taking into account how this choice affects the
distribution P1(·, x0, u0).

When X1 is uncertain, the following special case shows why it matters whether we
can observe the realization x1 of X1 before choosing u1. Suppose that f0(x0, u0) = 0,
f1(x1, u1) = x1u1, and X1 takes the values 1 and -1 with probabilities 1/2. Suppose also
that the control u must equal one of the two values 1 and -1. If we have to choose u1
before observing x1, then E[X1u1] = 0. But if we can first observe x1, then u1 can depend
on this observation. By choosing u1 = u∗1(x1) = x1, we can make E[X1u1] = 1, which
yields a higher value of the objective (∗). ¶

In the general problem, the random process determined by {Pt} is to be controlled
in the best possible manner by appropriate choices of the successive variables {ut}. In all
that follows we shall assume that the realization xt of Xt can be observed before choosing
ut. The objective function is now the expectation

E

[
T∑
t=0

ft(Xt, ut(X
t))

]
. (1)
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Here, each control ut, for t = 0, 1, 2, . . . , T is a function ut(x
t) of the history of states up to

period t. Such functions are called policies. For many stochastic optimization problems,
including those studied here, this is the natural class of policies to consider in order to
achieve an optimum.

The expectation in (1) is the sum
∑T
t=0E[ft(Xt, ut(X

t))] of the expectations of each
successive term. These expectations, of course, depend on the probability distribution of
each Xt. To calculate these, first recall that in the case of a discrete random variable,
the probability that the events X1 = x1 and X2 = x2 occur jointly, given x0, equals the
probability that X2 = x2 occurs given X1 = x1, times the probability that X1 = x1 occurs
given x0. In general, thus, the probability of the history xt = (x1, x2, . . . , xt), is given by

P t(xt, ut−1) = P0(x1, x0, u0) · P1(x2, x
1, u1) · . . . · Pt(xt, xt−1, ut−1), (2)

given that the sequence of controls up to t− 1 is ut−1. In the continuous random variable
case, the joint density pt(xt, ut−1) is determined by the same formula, with each Pt in
(2) replaced by pt. Though not always necessary, we shall assume that ft and Pt+1 are
continuous in (xt, ut).

The optimization problem is to find a sequence of policies u∗0(x0), . . . , u∗T (xT ), that
makes the objective (1) as large as possible. We now define

Js(x
s) = maxE

[
T∑
t=s

ft(Xt, ut(X
t)) | Xs = xs

]
, (3)

where the expected total reward is maximized over all policy sequences ut = ut(x
t), for

t = s, . . . , T . The expectation is taken over all possible sequences of realizations Xt

of the random variables, given that the history of states up to period s is xs. In this
computation, each control ut(X

t) in the sequence must be applied when computing the
sequence of successive states (Xs+1, Xs+2, . . . XT )

The central tool in solving optimization problems of the type (1) is the following
dynamic programming equation or optimality equation:

Js(x
s) = max

us

{fs(xs, us) + E[Js+1(Xs+1) | Xs = xs, us]}, (4)

Moreover, when s = T we have

JT (xT ) = max
uT

fT (xT , uT ). (5)

These equations are similar to (6) and (7) in Theorem 12.1.1 for the deterministic
case. The only significant difference is that (4) allows for uncertainty, by including the
conditional expectation of Js+1. As in the corresponding deterministic problem considered
in Section 12.1, first (5) is used to find u∗T (xT ) and JT (xT ). Thereafter, (4) is used repeat-
edly in a backward recursion to find first u∗T−1(xT−1) and JT−1(xT−1), then u∗T−2(xT−2)

and JT−2(xT−2), and so on all the way back to u∗0(x0) and J0(x0).
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As in the deterministic case, equations (4) and (5) are, essentially, both necessary
and sufficient. They are sufficient in the sense that if u∗t (x

t) maximizes the right-hand
side of (4) for t = 0, . . . , T − 1, and also u∗T (xT ) maximizes the right-hand side of (5),
then {u∗t } is indeed an optimal policy sequence. On the other hand, the same equations
are necessary in the sense that, for every pair xt that occurs with positive probability (or
has a positive probability density when there is a continuous density function), an optimal
control u∗t (x

t) must yield a maximum on the right-hand side of (4) for s = 0, 1, . . . , T − 1,
and u∗T (xT ) one of (5).

An important special case occurs when the probability distribution of Xt+1 depends
on the control at t, and only on the last realization of the state, xt. In this case, we can
write this distribution simply as Pt+1(·, xt, ut), or the associated density as pt+1(·, xt, ut).
In this case, the optimal control of period t depends only on the value of xt, and not on
xt−1, so that we can re-express Jt(xt) and ut(xt) as a function of the realized value of
Xt only. These policy functions are called Markov policies or Markov controls, to
emphasize their independence from earlier values of the state variable.

A particularly simple case is when the perturbations to the state variable are inde-
pendently distributed. In this case, one assumes that for t = 0, 1, . . . , T the state equation
takes the form

Xt+1 = gt(xt, ut,Ωt+1), (6)

with xt given, where Ωt+1 is a random variable whose probability distribution does not
depend on xt, ut or Ωt. In this case, we can still express Jt and ut as a function of xt
only (and not of the realized value of Ωt), and equation (4) continues to hold. Intuitively,
this is because Ωt = ωt would not appear as a conditioning variable in (4). Formally, this
independence can be proved by backward induction. Some examples below are of this
special form.

EXAMPLE 2: Consider a stochastic version of Example 12.1.4, where at each time
t = 0, 1, . . . , T − 1, the state variable Xt is an investor’s wealth, the control variable ut
is consumption, and the certain return at to investment in that example is replaced by
a random return Ωt+1. Moreover, suppose that {Ωt}Tt=1 is a sequence of independently
distributed random variables with positive values, and that the state Xt is assumed to
evolve according to the stochastic difference equation

Xt+1 = Ωt+1(Xt − ut), for ut ∈ [0, xt], (i)

with x0 given. The objective function is the obvious counterpart of that in Example 12.1.4,
namely the expected sum of discounted utility, given by

E

[
T−1∑
t=0

βtu1−γt + βTAX1−γ
T

]
, (ii)

where β ∈ (0, 1) is a discount factor, while γ ∈ (0, 1) is a taste parameter, and A is a
positive constant. Thus, the problem is to maximize (ii) subject to (i). Assume that

E[Ω1−γ
t ] <∞ for all t.

26



Solution: Here, JT (xT ) = βTAx1−γT , exactly as in (ii) in Example 12.1.4. Because the
random variables Ωt are independently distributed, the value functions take the form
Jt(xt). To find JT−1(x), we use the optimality equation

JT−1(x) = max
u
{βT−1u1−γ + E[βT−1A(ΩT (x− u))1−γ ]}. (∗)

The expectation must be calculated by using the probability distribution for ΩT . In fact,
the right-hand side of (∗) is of the same form as (iv) in Example 12.1.4. To make it

exactly the same, define the new constant aT−1 so that a1−γT−1 = E[Ω1−γ
T ]. With this new

notation, the optimal control uT−1 is given by (v) in Example 12.1.4. Furthermore, equa-
tions (vii), (viii), and (ix) of that example still hold provided we define each at to satisfy

a1−γt = E[Ω1−γ
T+1], for t = 0, 1, . . . , T − 1. One may call each at the certainty equivalent

return because the solution is exactly the same as if it replaced the uncertain return de-
scribed by the random variable Ωt+1. Of course, each at depends on the taste parameter
γ as well as on the distribution of Ωt. ¶
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