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Abstract

The following is proven here: let W : X × C −→ R, where X is convex, be a

continuous and bounded function such that for each y ∈ C, the function W (·, y) :
X −→ R is concave (resp. strongly concave; resp. Lipschitzian with constant M ; resp.

monotone; resp. strictly monotone) and let Y ⊇ C. If C is compact, then there exists

a continuous extension of W , U : X × Y −→ £
infX×C W, supX×C W

¤
, such that for

each y ∈ Y , the function U (·, y) : X −→ R is concave (resp. strongly concave; resp.

Lipschitzian with constant My; resp. monotone; resp. strictly monotone).

JEL classification: C00; C65; C72.

Keywords: Continuous extension; concavity; monotonicity; Lipschitz continuity.

∗This paper is based on my Ph.D. dissertation at Brown University. I thank Herakles Polemarchakis for
his advise and take responsibility for any mistakes. Financial support from Brown, Banco de la Republica
and the Cowles Foundation is gratefully acknowledged.

†Department of Economics, Yale University. P.O. Box 208281, New Haven, CT, 06520, U.S.A. Fax:
1-203-432-6167. E-mail: andres.carvajal@yale.edu

1



There are classical extension results in real, abstract and convex analysis.

Urysohn’s lemma says that, given two closed disjoint subsets of a normal space, there

exists a continuous function defined on the whole space, mapping each set into a different

constant.

Tietze’s extension theorem states that any continuous and bounded function defined

from a closed subset of a metric space into the real line has a continuous extension to the

whole space, with the same bounds as the original function.

Regarding Lipschitz continuity, Kirszbaum’s theorem (see Federer (1969), 2.10.43) states

that given a Lipschitzian function defined on a subset of a metric space, there exists an

extension to the whole space that has the same Lipschitz constant.

In convex analysis, the classical extension result studies conditions under which a convex

and bounded real valued function defined on the interior of a set can be extended to a

continuous and convex function defined on the whole of the set.

A problem similar to the one addressed by Tietze’s theorem is studied here. Suppose

that X ⊆ RJ and C ⊆ Y ⊆ RK , where J,K <∞. Suppose that X. Let W : X × C −→ R

be continuous, bounded and such that for each y ∈ C, W (·, y) : X −→ R is concave. I

study conditions on C under which one can ensure that there exists U : X × Y −→ R such

that:

1. U is continuous;

2. for every y ∈ Y , U (·, y) : X −→ R is concave;

3. for every (x, y) ∈ X × C, U (x, y) =W (x, y);

4. for every (x, y) ∈ X × Y , inf
(x0,y0)∈X×C

W (x0, y0) 6 U (x, y) 6 sup
(x00,y00)∈X×C

W (x00, y00).

This result is important, since preferences of individuals that interact strategically are

usually modelled by functions like U . For example, the simplest proof of existence of Nash
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equilibria in a finite game, which invokes Kakutani’s fixed point theorem, assumes that

each individual’s preferences are representable by functions like U , with x representing that

individual’s action and y representing his opponent’s actions. If one were given a set of

profiles of actions in such an environment and one wanted to rationalize that set as Nash

equilibria for some unobserved preferences, then, for each individual, one would need to

apply standard revealed preference analysis on his own actions, for each observed value

of the actions of his opponents, and would then need a continuous extension like the one

introduced here.

By adapting the proof of Tietze’s extension theorem given by Bridges (1998), I find that

compactness of C suffices. Moreover, compactness allows me to show that if for each y ∈ C,

W (·, y) is strongly concave (resp. Lipschitzian with constant M — independent of y; resp

monotone; resp. strictly monotone), then U can further be found that satisfies that for each

y ∈ Y , U (·, y) is strongly concave (resp. Lipschitzian with constant My; resp. monotone;

resp. strictly monotone).

There is some related literature. Stadje (1987) shows that if A ⊆ (a, b) has full Lebesgue
measure with respect to (a, b) and W : A −→ R is measurable and mid-convex, then there

exists a convex extension of W to (a, b). Neither continuity nor Lipschitz continuity are

studied by Stadje.

Matoušková (2000) shows that if Y is a compact Hausdorff space, A ⊆ Y is closed, and

W : A −→ R is continuous and Lipschitzian, then there exists a continuous extension of W ,

U : Y −→ R which is Lipschitzian, with the same constant as W , and has the same sup

norm.1 No concavity or monotonicity properties are studied by Matoušková.

On the other hand, Howe (1986) gives necessary and sufficient conditions under which

for a finite collection
©
W l
ªL
l=1

of continuous and concave functions, W l : RJ+ −→ R+, there

exist M ∈ N, a linear function L : RJ −→ RM and U : RM+ −→ R+ continuous and concave,
1The target set need not be R, but any metric space with lower semicontinuous metric.
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and for each l ∈ {1, ..., L}, there exists yl ∈ RM+ such that W l (x) = U
¡
Lx+ yl

¢
, for every

x ∈ RJ+.
Because this last problem is similar to the one studied here, the differences deserve to

be pointed out. The first and more obvious one is that no smoothness or monotonicity

properties are dealt with by Howe. The second one, which is fundamental, is that I am not

assuming that C is finite. Besides, I take as given the set Y , and, therefore, cannot use its

dimension as a variable. Moreover, I do not require concavity of the function U , but only

of its cross sections (U (·, y) for each y ∈ Y ), and Y need not even be convex.

In what follows, given a set Y ⊆ RK , I define the point-to-set distance function dis :

Y × P (Y ) \ {∅} −→ R+; (y, C) 7−→ infby∈C ky − byk, where P (Y ) represents the power set
of Y . For simplicity of notation, I use k·k for the Euclidean norm without being specific

about the dimension of the space being considered. Similarly, Bd (z) denotes the open ball

of radius d around z in the Euclidean space in which z lies. Given Z ⊆ RK , I denote by Z0

its interior and by Z its closure.

The main result obtained here is the following:

Theorem 1 Let X ⊆ RJ and Y ⊆ RK , where J,K ∈ N, be nonempty. Suppose that X is

convex and C ⊆ Y is compact. Suppose that W : X × C −→ R is continuous and bounded,

and that for each y ∈ C, W (·, y) is concave. Then, there exists U : X×Y −→ R, continuous,

such that

1. for each (x, y) ∈ X × C, U (x, y) =W (x, y);

2. for each y ∈ Y , U (·, y) is concave;

3. inf
(x,y)∈X×Y

U (x, y) = inf
(x,y)∈X×C

W (x, y) and sup
(x,y)∈X×Y

U (x, y) = sup
(x,y)∈X×C

W (x, y).
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Proof. If W is constant, the result is trivial. Else, let

l :

"
inf

(x,y)∈X×C
W (x, y) , sup

(x,y)∈X×C
W (x, y)

#
−→ [1, 2]

be the affine increasing bijection. Both l and l−1 are concave, continuous and strictly

increasing. Define f = l ◦ W : X × C −→ [1, 2]. By construction, f is continuous,

inf(x,y)∈X×C f (x, y) = 1 and sup(x,y)∈X×C f (x, y) = 2, and for each y ∈ C, f (·, y) is
concave.

Since C is closed, it follows (Moore, 1999b, 7.54) that ∀y ∈ Y \C, dis (y, C) > 0.
Define the function F : X × Y −→ R by

F (x, y) =

 f (x, y) if y ∈ C

inf by∈C f(x,by)ky−byk
dis(y,C) otherwise

It is obvious that ∀ (x, y) ∈ X × C, F (x, y) = f (x, y). Moreover, F has the following

properties:

Property 1: ∀ (x, y) ∈ X × Y , F (x, y) ∈ [1, 2]
Proof of property 1: Fix (x, y) ∈ X × (Y \C). Clearly, ∀by ∈ C, f (x, by) ky − byk 6

2 ky − byk, from where,

infbby∈C f
³
x,bby´°°°y − bby°°° 6 f (x, by) ky − byk 6 2 ky − byk

so, ∀by ∈ C, F (x, y) 6 2 ky − byk /dis (y, C). However, since k·k is continuous and C

is compact, it follows that ∃by ∈ C such that ky − byk = dis (y, C), and, therefore, that

F (x, y) 6 2. Moreover, ∀by ∈ C, 1 6 ky − byk /dis (y,C) ≤ f (x, by) ky − byk /dis (y, C), from
where F (x, y) > 1.
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Property 2: ∀y ∈ Y , F (·, y) is concave.
Proof of property 2: This is obvious for y ∈ C, so fix y ∈ Y \C. Let x, x0 ∈ X and

λ ∈ [0, 1]. By compactness of C and continuity of f and k·k, ∃by ∈ C such that

F (λx+ (1− λ)x0, y) =
f (λx+ (1− λ)x0, by) ky − byk

dis (y,C)

Fix one such by ∈ C. Since f (·, by) is concave, ky − byk > 0 and dis (y,C) > 0.

F (λx+ (1− λ)x0, y) > λ
f (x, by) ky − byk

dis (y, C)
+ (1− λ)

f (x0, by) ky − byk
dis (y, C)

> λ
infbby∈C f

³
x,bby´°°°y − bby°°°

dis (y, C)
+ (1− λ)

infbby∈C f
³
x0,bby´°°°y − bby°°°

dis (y, C)

= λF (x, by) + (1− λ)F (x0, by)
Property 3: F is continuous.

Proof of property 3: Continuity of F at (x, y) ∈ X × C0 follows by construction,

and follows easily from the theorem of the maximum, at (x, y) ∈ X × (Y \C), since f is
continuous, C is compact and (x, y) 7−→ dis (y, C) is continuous (Moore, 1999b, 7.53). So,

it only remains to show that F is continuous at each (x, y) ∈ X ×
³
C ∩ (Y \C)

´
.2 Fix

(x, y) ∈ X ×
³
C ∩ (Y \C)

´
and ε ∈ (0, 1). This result is shown in a series of claims:

Claim 1: (∃r ∈ R++) (∀ (ex, ey) ∈ (Br (x)×Br (y)) ∩ (X × C)) : |f (x, y)− f (ex, ey)| < ε

Proof of claim 1: Since (x, y) ∈ X × C and f is continuous, there exists r ∈ R++ such
that

(∀ (ex, ey) ∈ Br (x, y) ∩ (X × C)) : |f (x, y)− f (ex, ey)| < ε

2 It is obvious that C0 ∪ (Y \C) ∪
³
C ∩ (Y \C)

´
⊆ Y . To see that Y ⊆ C0 ∪ (Y \C) ∪

³
C ∩ (Y \C)

´
,

let y ∈ Y . Suppose that y /∈ Y \C. If y /∈ C0, then, ∀ε ∈ R++, Bε (y) ∩ (Y \C) 6= ∅, which implies that
y ∈ (Y \C).
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Fix one such r, and define r = r
2 ∈ R++. By triangle inequality, Br (x)×Br (y) ⊆ Br (x, y),

which proves the claim.

For the following claims, take r as given by claim 1.

Claim 2:
¡∀ey ∈ Br/4 (y) ∩ (Y \C)

¢
: dis (ey,C) = dis (ey,Br (y) ∩ C)

Proof of claim 2: Fix ey ∈ Br/4 (y) ∩ (Y \C). For each by ∈ C\Br (y),

key − byk > ky − byk− ky − eyk
>

3r

4

> 2 key − yk

> 2 infbby∈Br(y)∩C
°°°ey − bby°°°

= 2dis (ey,Br (y) ∩ C)

> dis (ey,Br (y) ∩ C)

which establishes the result.

Claim 3: (∀ex ∈ Br (x) ∩X)
¡∀ey ∈ Br/4 (y) ∩ (Y \C)

¢
:

infby∈C f (ex, by) key − byk = infby∈Br(y)∩C f (ex, by) key − byk
Proof of claim 3: Fix ex ∈ Br (x)∩X and ey ∈ Br/4 (y)∩ (Y \C) . For each by ∈ C\Br (y),

since f (ex, by) > 1 and f (ex, y) 6 2, it follows from the set of inequalities in the proof of claim
2 that

f (ex, by) key − byk > 3r

4
> f (ex, y) key − yk > infbby∈Br(y)∩C f

³ex,bby´°°°ey − bby°°°
which establishes the claim.
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Claim 4: (∀ex ∈ Br (x) ∩X)
¡∀ey ∈ Br/4 (y) ∩ (Y \C)

¢
: F (x, y)−ε 6 F (ex, ey) 6 F (x, y)+

ε

Proof of claim 4: Fix ex ∈ Br (x)∩X and ey ∈ Br/4 (y)∩ (Y \C). For each by ∈ Br (y)∩C,
since (ex, by) ∈ (Br (x)×Br (y))∩(X × C), it follows from claim 1 that f (x, y)−ε < f (ex, by) <
f (x, y) + ε. So, since f (x, y)− ε > 0 and 0 < dis (ey, C) 6 key − byk, one has that

(f (x, y)− ε) dis (ey, C) 6 (f (x, y)− ε) key − byk
6 f (ex, by) key − byk
6 (f (x, y) + ε) key − byk

and, therefore,

(f (x, y)− ε) dis (ey, C) 6 infby∈Br(y)∩C f (ex, by) key − byk
6 (f (x, y) + ε) infby∈Br(y)∩C key − byk
= (f (x, y) + ε) dis (ey,Br (y) ∩ C)

Claims 3 and 2, then, imply that

(f (x, y)− ε) dis (ey, C) 6 infby∈C f (ex, by) key − byk 6 (f (x, y) + ε) dis (ey, C)
and, therefore, since dis (ey, C) > 0, that f (x, y)− ε 6 F (ex, ey) 6 f (x, y) + ε, which proves

the claim.

Hence, to establish continuity at (x, y), define δ = r
4 ∈ R++. It follows from claims 1 and

4 that ∀ (ex, ey) ∈ Bδ (x, y) ∩ (X × Y ), |F (x, y)− F (ex, ey)| 6 ε, which proves the property.

Now, define U = l−1 ◦ F : X × Y −→ R, which is well defined given property 1. Given
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property 3, since l−1 is continuous, so is U . Also, if (x, y) ∈ X × C, by construction,

U (x, y) = l−1 (F (x, y)) = l−1 (f (x, y)) = l−1 (l (W (x, y))) = W (x, y). Moreover, since

l−1 is increasing and concave, property 2 implies that for each y ∈ Y , U (·, y) is concave.
Finally, since

l−1 : [1, 2] −→
"

inf
(x,y)∈X×C

W (x, y) , sup
(x,y)∈X×C

W (x, y)

#

it is obvious that inf(x,y)∈X×Y U (x, y) > inf(x,y)∈X×C W (x, y), whereas, by definition,

inf(x,y)∈X×Y U (x, y) 6 inf(x,y)∈X×C W (x, y). A similar reasoning establishes the result

for the supremum.

Although compactness of C was used in the proof of properties 1 and 2, this is by no

means necessary. Property 1 can be established assuming only closedness as in Bridges

(1998, 3.2.13), whereas concavity of F (·, y) for y ∈ Y \C could be argued as follows: fix

y ∈ Y \C, and consider the family

Fy = {g : X −→ R| (∃by ∈ C) : g (·) = f (·, by) ky − byk}
of concave and bounded-below functions; it follows from Moore (1999a, 5.72) that bgy : X −→
R;x 7−→ infg∈Fy g (x) is concave, which implies, since dis (y,C) > 0, that F (·, y) is concave.
Compactness of C, however, allows the following:

Corollary 1 Let X ⊆ RJ and Y ⊆ RK , where J,K ∈ N, be nonempty. Suppose that X is

convex and C ⊆ Y is compact. Suppose that W : X × C −→ R is continuous and bounded,

and that for each y ∈ C, W (·, y) is strongly concave (resp. Lipschitzian with constant M ;
resp. monotone; resp. strictly monotone). Then, there exists U : X ×Y −→ R, continuous,

such that

1. For each (x, y) ∈ X × C, U (x, y) =W (x, y)
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2. For each y ∈ Y , U (·, y) is strongly concave (resp. Lipschitzian with constant My;

resp. monotone; resp. strictly monotone.)

3. inf
(x,y)∈X×Y

U (x, y) = inf
(x,y)∈X×C

W (x, y) and sup
(x,y)∈X×Y

U (x, y) = sup
(x,y)∈X×C

W (x, y).

Proof. If X is a singleton, the result follows trivially from theorem 1. Else, recall all

the definitions given in the proof theorem 1.

For strong concavity, it suffices to show that for each y ∈ C, f (·, y) is strongly concave,
that for each y ∈ Y \C, F (·, y) is strongly concave and that l−1 is strictly increasing. By
strong concavity, sup(x,y)∈X×C W (x, y) > inf(x,y)∈X×C W (x, y), from where both l and l−1

are strictly increasing. Fix y ∈ C, let x, x0 ∈ X, x 6= x0 and let λ ∈ (0, 1); by strong
concavity of W (·, y) and concavity and strict monotonicity of l,

l (W (λx+ (1− λ)x0, y)) > l (λW (x, y) + (1− λ)W (x0, y))

= λl (W (x, y)) + (1− λ) l (W (x0, y))

Now, fix y ∈ Y \C, let x, x0 ∈ X, x 6= x0 and let λ ∈ (0, 1); by compactness of C and

continuity of f and k·k, ∃by ∈ C such that

F (λx+ (1− λ)x0, y) =
f (λx+ (1− λ)x0, by) ky − byk

dis (y,C)

Fix one such by ∈ C. Since f (·, by) is strongly concave, ky − byk > 0 and dis (y, C) > 0.

F (λx+ (1− λ)x0, y) > λ
f (x, by) ky − byk

dis (y, C)
+ (1− λ)

f (x0, by) ky − byk
dis (y, C)

> λ
infbby∈C f

³
x,bby´°°°y − bby°°°

dis (y, C)
+ (1− λ)

infbby∈C f
³
x0,bby´°°°y − bby°°°

dis (y, C)

= λF (x, by) + (1− λ)F (x0, by)
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I now show that if for each y ∈ C, W (·, y) is Lipschitzian with constantM (independent

of y), then for each y ∈ Y , U (·, y) is Lipschitzian with some constant My. If W is constant,

the result is trivial. Hence, I assume that the affine bijection l has slope a > 0. It follows by

construction that for each y ∈ C, U (·, y) is Lipschitzian with constant My = M . Since for

each y ∈ C, W (·, y) is Lipschitzian with constant M , one has that f (·, y) is Lipschitzian
with constant aM . Fix y ∈ Y \C and x, x0 ∈ X. By definition of F , compactness of C and

continuity of f and k·k, as before, there exist by,bby ∈ C such that

F (x, y) =
f (x, by) ky − byk

dis (y, C)

F (x0, y) =
f
³
x0,bby´°°°y − bby°°°
dis (y, C)

Fix such by,bby ∈ C. By definition, f (x, by) ky − byk 6 f
³
x,bby´°°°y − bby°°° and f ³x0,bby´°°°y − bby°°° 6

f (x0, by) ky − byk, whereas, since both f (·, by) and f ³·,bby´ are Lipschitzian with constant aM ,

|f (x, by)− f (x0, by)| 6 aM kx− x0k and
¯̄̄
f
³
x,bby´− f

³
x0,bby´¯̄̄ 6 aM kx− x0k, so, therefore,

¯̄̄̄
f (x, by) ky − byk

dis (y,C)
− f (x0, by) ky − byk

dis (y, C)

¯̄̄̄
6 aM

kx− x0k ky − byk
dis (y, C)¯̄̄̄

¯̄f
³
x,bby´°°°y − bby°°°
dis (y, C)

−
f
³
x0,bby´°°°y − bby°°°
dis (y, C)

¯̄̄̄
¯̄ 6 aM

kx− x0k
°°°y − bby°°°

dis (y, C)

Define My =
M

dis(y,C) maxy0∈C ky − y0k, which exists and satisfies My > 0, because C is
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compact and k·k is continuous. Clearly,

¯̄̄̄
f (x, by) ky − byk

dis (y, C)
− f (x0, by) ky − byk

dis (y,C)

¯̄̄̄
6 aMy kx− x0k¯̄̄̄

¯̄f
³
x,bby´°°°y − bby°°°
dis (y,C)

−
f
³
x0,bby´°°°y − bby°°°
dis (y,C)

¯̄̄̄
¯̄ 6 aMy kx− x0k

Now, if f (x, by) ky − byk 6 f
³
x0,bby´°°°y − bby°°°, it follows that F (x, y) 6 F (x0, y) 6 f(x0,by)ky−byk

dis(y,C) ,

from where |F (x, y)− F (x0, y)| 6 aMy kx− x0k. If, on the other hand, f
³
x0,bby´°°°y − bby°°° <

f (x, by) ky − byk, then F (x0, y) < F (x, y) 6 f(x,bby)ky−bbyk
dis(y,C) , so, again, |F (x, y)− F (x0, y)| 6

aMy kx− x0k. Hence, it follows that F (·, y) is Lipschitzian with constant aMy, and, there-

fore, that U (·, y) = ¡l−1 ◦ F¢ (·, y) is Lipschitzian with constant My.

Finally, I show that if for each y ∈ C, W (·, y) is monotone (resp. strictly monotone),
then for each y ∈ Y , U (·, y) is monotone (resp. strictly monotone). If there do not exist
x, x0 ∈ X such that x À x0 (resp. x > x0) the result is trivial. Else, fix x, x0 ∈ X, x À x0

(resp. x > x0) and y ∈ Y . Since for each by ∈ C, W (x, by) > W (x0, by), it follows that
both l and l−1are strictly increasing and, hence, that for each by ∈ C, f (·, by) is monotone
(resp. strictly monotone). Then, if y ∈ C, the result is trivial and I now assume that

y ∈ Y \C. By compactness of C and continuity of f , there exists by ∈ C such that F (x, y) =

f (x, by) ky − byk /dis (y, C). Fix one such by ∈ C. Since f (·, by) is monotone (resp. strongly
monotone), ky − byk > 0 and dis (y, C) > 0, one has that

F (x, y) =
f (x, by) ky − byk

dis (y,C)
>

f (x0, by) ky − byk
dis (y,C)

> infbby∈C
f
³
x0,bby´°°°y − bby°°°
dis (y, C)

= F (x0, y)

showing that F (·, y) is monotone (resp. strictly monotone). Since l−1 is strictly increasing,
it follows that U (·, y) is monotone (resp. strictly monotone).
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