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Abstract

This note shows that the testability result obtained by Donald Brown and Rosa
Matzkin [Econometrica 64, 1249-1262] for exchange economies survives the in-
troduction of standard, aggregate production, even without the observation of
production levels.
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In a seminal contribution, [1] showed that the hypothesis of Walrasian equi-
librium in an exchange economy can be refuted upon observation of finitely
many pairs of prices and profiles of individual endowments (i.e. that there are
nontrivial restrictions on the equilibrium manifold). The crux of the argument
there was that, in the presence of nonnegativity constraints, there exists a fun-
damental tension between the two principles of the Walrasian model, namely
individual rationality and market clearing.1

A natural question to ask is whether the same conclusion applies to economies
in which production takes place. In this case, if data on production is available,
then it readily follows that the general equilibrium hypothesis can be refuted.
What is less obvious is that the same conclusion applies if only prices and en-
dowments are observed. In this setting, conditions that are equivalent to the
rationalizability of a data set seem easy to obtain (subject to the conditions
imposed on the technology) but one might expect that these conditions be tau-
tologies, and hence that refutability fail, because: (i) If profits are not observed,
individual incomes are undetermined and hence the restrictions imposed by in-
dividual rationality may be weakened; and (ii) In the presence of production,
nonnegativity constraints on consumption are less informative: production may
transform endowments so as to allow consumption allocations outside the orig-
inal Edgeworth boxes.
Introducing production, however, adds profit maximization as an element of

the model and this additional structure may as well be a source of refutability
for the hypothesis.
This note studies refutability of the Walrasian hypothesis for economies with

aggregate production. Two technological assumptions are considered: constant
returns to scale and no free lunch. Under constant returns to scale, profit max-
imization implies zero profits for the firm and, hence, its introduction does not
leave individual outcomes undetermined, effectively assuming away the first dif-
ficulty mentioned above. The second difficulty, however, remains, and the result
obtained here shows that the structure added by profit maximization makes up
for weakened nonnegativity constraints. When the only assumption is that one
cannot obtain positive output without using some input, the result shows that
the equilibrium hypothesis is refutable upon observation of the (constant) own-
ership structure in the economy: profit maximization makes up for the loss
structure that induces both difficulties.
In both cases, the argument extends the example provided by [1], to argue

that there exist data which are inconsistent with the equilibrium hypothesis.
This goes to say that the relationship existing between prices and endowments,
first discovered by [1] for exchange economies, is profound enough to be main-
tained in seemingly less restrictive settings.
For the hypothesis of Pareto-efficiency in economies with (produced) public

goods, [10] solved the testability problem, imposing conditions on the technology
which are identical to the ones initially imposed here. As it turns out, [10] finds

1This work has been extended to economies with public goods, [10], dynamic exchange
economies with incomplete markets, [6], exchange economies with random preferences, [2],
and exchange economies with externalities, [3]. For a survey of this literature, see [4].
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examples of data which are inconsistent with the efficiency hypothesis and arise
simply from the demand side of that economy (see [4] too). Here, demand
considerations do not suffice, and it is the combination of individual rationality
and profit maximization that implies refutability.

1 Constant returns to scale

Fix a society I, with cardinality I ∈ N, and fix L ∈ N, the number of commodi-
ties. Let C be the set of all non-empty, closed, negative monotonic,2 convex
cones in RL, and let U be the class of all continuous, strongly concave, strictly
monotone functions from RL+ into R.
For each individual i ∈ I, preferences will be denoted by ui ∈ U and en-

dowments by ei ∈ RL++. An aggregate technology with constant returns to
scale is denoted by C ∈ C. The (L− 1)-dimensional, strictly positive sim-
plex will be denoted by SL−1++ . For (p,m) ∈ SL−1++ × R++, denote B (p,m) =©
x ∈ RL+

¯̄
p · x ≤ m

ª
.

Definition 1. For
³¡
ui, ei

¢
i∈I , C

´
∈
¡
U ×RL++

¢I × C, let W ³¡
ui, ei

¢
i∈I , C

´
be the set of prices p ∈ SL−1++ such that there exist optimal supply, y ∈ argmaxy0∈C p·
y0, and a profile of optimal demands,¡

xi
¢
i∈I ∈

Y
i∈I
arg max

x∈B(p,p·ei)
ui (x) ,

such that markets clear:
P

i∈I
¡
xi − ei

¢
= y.

It is important to notice that, in the previous definition, p ·y = 0 and, hence,
profits can be ignored in each individual budget constraint.

1.1 Characterization

Suppose that one observes a finite data set of prices and profiles of endowments.
The refutability problem studies whether it is always possible to find a profile of
preferences and a technology for which each one of the observed prices is consis-
tent with the corresponding profile of endowments via the equilibrium concept.
For this, one treats the technology and the profile of individual preferences
as the unobserved and invariant fundamentals whose existence is being tested.
The profile of endowments is assumed to be an observable, exogenous variable
and the prices are the endogenous, observable variable.3 The question is, then,
whether there exist conditions on the observable variables, which are implied by
the existence of unobservable fundamentals and the equilibrium concept. If the
conditions are not tautologies, then the theory is refutable. If they characterize
existence of fundamentals, then they exhaust the implications of the model.
Let T ∈ N.
2A set Y ⊆ RL is said to be negative monotonic if (y ∈ Y and y0 ≤ y) =⇒ y0 ∈ Y .
3Supply and individual demands are assumed to be unobservable.
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Definition 2. A sequence
³¡
eit
¢
i∈I , p

t
´T
t=1

in RLI++×SL−1++ , is CRS-rationalizable

if there exists
³¡
ui
¢
i∈I , C

´
∈ UI × C such that for every t ∈ {1, ..., T}, pt ∈

W
³¡
ui, eit

¢
i∈I , C

´
.

The following theorem offers a characterization of rationalizability which is
mediated by existential quantifiers.

Theorem 1. Sequence
³¡
eit
¢
i∈I , p

t
´T
t=1

is CRS-rationalizable if, and only if,

there exist (yt)
T
t=1 in RL, and

³¡
vit, λit, xit

¢
i∈I

´T
t=1

in R × R++ × RL+, that
satisfy the following conditions:

1. For every t, t0 ∈ {1, ..., T}, pt · yt0 ≥ pt · yt = 0;

2. For every i ∈ I and every t, t0 ∈ {1, ..., T}, vit0 ≤ vit+ λitpt ·
³
xit

0 − xit
´
,

with strict inequality if xit 6= xit
0
;

3. For every i ∈ I and every t ∈ {1, ..., T}, pt ·
¡
xit − eit

¢
= 0;

4. For every t ∈ {1, ..., T},
P

i∈I
¡
xit − eit

¢
= yt.

Proof. This follows straightforwardly from [11, Theorem 6] and [7, Theorem 2],
by an argument identical to the one used by [1].

Because of its existential quantifiers, the previous characterization fails to
provide a test of the Walrasian hypothesis (at least a direct one). Standard
quantifier-elimination results, introduced to economics by [1], allow us to prove
that there exists a quantifier-free characterization of rationalizability:

Corollary 1. There exists a finite system, (CRS−R), of polynomial inequalities
in
¡
RLI++ × SL−1++

¢T
, such that a sequence

³¡
eit
¢
i∈I , p

t
´T
t=1

is CRS-rationalizable

if, and only if, it satisfies (CRS −R).

Proof. This follows from the Tarsky-Seidenberg theorem, since the conditions
of the theorem (including domain restrictions) constitute a semialgebraic set:
see [8] or [4].

Since the corollary does not rule out the possibility of system (CRS − R)
being a tautology, it is silent about whether the equilibrium hypothesis can be
refuted. Put another way, the corollary only says that the set of rationalizable
data sets is semialgebraic (given I, L and T ), but fails to imply the existence of

nonrationalizable data sets, since
¡
RLI++ × SL−1++

¢T
is semialgebraic.
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1.2 Nonrationalizable data

To see that the equilibrium hypothesis can be refuted, it suffices to notice that
the data ¡¡¡

e11, e21
¢
, p1
¢
,
¡¡
e12, e22

¢
, p2
¢¢

of Figure 1 is not rationalizable:

[Figure 1]

To see why, notice that if individual 1 is to satisfy conditions 2 and 3 of
the theorem (2 implies WARP), without loss of generality, x11 has to lie in
the thicker part of individual 1’s corresponding budget line in Figure 2. Now,
given nonnegativity constraints on consumption, this implies that production y1

must lie in the thicker part of the (zero-profit) hyperplane
©
y ∈ R2

¯̄
p1 · y = 0

ª
,

as depicted in Figure 3,which, then, implies p2 · y1 > 0 and violates condition 1
of the theorem (profit maximization).

[Figure 2]

[Figure 3]

Indeed, in this example individual rationality of consumer 1 requires that
at prices p1 commodity 1 be used to produce commodity 2 in a ratio equal to
the relative price of commodity 1 (y11 < 0 and −y12/y11 = p11/p

1
2). Then, at

prices p2, where the relative price of commodity 2 has increased and given that
the previous rate of transformation was technically feasible, there would exist
feasible production bundles consistent with positive profits (at p2: p2 · y1 =
y11
¡
p21 − p22p

1
1/p

1
2

¢
> 0), which would be inconsistent with profit maximization

and constant returns to scale.4

2 No free lunch

A production set Y ⊆ RL satisfies no free lunch if there cannot be production
without the use of some input: y > 0 implies y /∈ Y . Let Y be the set of all
non-empty, closed, convex, negative monotonic sets in RL that satisfy no free
lunch.
Since the technology may now allow for non-zero profits, our definition of

individual must include information about profit shares, which will be denoted
by

¡
θi
¢
i∈I , and the equilibrium set (W ) must now account account for the

effects of profits on the budget constraints. Let SI−1+ be the nonnegative (I−1)-
dimensional simplex in RI .

4There is another way to read the example: If the data are going to be consistent with
profit maximization, then production levels must have y12 ≤ 0 and y21 ≤ 0, which only goes to
reinforce the violation of WARP by consumer 1.
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Definition 3. For
³¡
ui, ei

¢
i∈I , θ, Y

´
∈
¡
U ×RL++

¢I×SI−1+ ×Y, letW
³¡
ui, ei

¢
i∈I , θ, Y

´
be the set of prices p ∈ SL−1++ such that there exist optimal supply, y ∈ argmaxy0∈Y p·
y0, and a profile of optimal demands,¡

xi
¢
i∈I ∈

Y
i∈I
arg max

x∈B(p,p·ei+θip·y)
ui (x) ,

such that markets clear:
P

i∈I
¡
xi − ei

¢
= y.

2.1 Characterization

Again, suppose that one observes prices and profiles of endowments, and as-
sume, furthermore, that the ownership structure θ is also known. As before,
the question is whether there exist nontautological conditions on the observ-
able variables implied by the existence of unobservable fundamentals and the
equilibrium concept.

Definition 4. A data set

µ³¡
eit
¢
i∈I , p

t
´T
t=1

, θ

¶
∈
¡
RLI++ × SL−1++

¢T × SI−1+ ,

is rationalizable if there exists
³¡
ui
¢
i∈I , Y

´
∈ UI × Y such that for every t ∈

{1, ..., T}, pt ∈W
³¡
ui, eit

¢
i∈I , θ, Y

´
.

Before stating our characterization of rationalizability, we need to strengthen
the axiom of profit maximization, proposed by [5] and [11], so as to account for
the no free lunch assumption.

Lemma 1. Let (yt, pt)
T
t=1 ∈

¡
RL × SL−1++

¢T
. There exists Y ∈ Y such that

(∀t ∈ {1, ..., T}) : yt ∈ argmax
y∈Y

p · y

if, and only if,
(∀t, t0 ∈ {1, ..., T}) : pt · yt0 ≤ pt · yt,

and ¡
∃ρ ∈ RL++

¢
(∀t ∈ {1, ..., T}) : ρ · yt ≤ 0.

Theorem 2. Sequence

µ³¡
eit
¢
i∈I , p

t
´T
t=1

, θ

¶
is rationalizable if, and only if,

there exist ρ ∈ RL++, (yt)
T
t=1 in RL, and

³¡
vit, λit, xit

¢
i∈I

´T
t=1

in R×R++×RL+,
that satisfy the following conditions:

1. For every t, t0 ∈ {1, ..., T}, pt · yt0 ≥ pt · yt;

2. For every t ∈ {1, ..., T}, ρ · yt ≤ 0;

3. For every i ∈ I and every t, t0 ∈ {1, ..., T}, vit0 ≤ vit+ λitpt ·
³
xit

0 − xit
´
,

with strict inequality if xit
0 6= xit;
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4. For every i ∈ I and every t ∈ {1, ..., T}, pt ·
¡
xit − eit

¢
= θipt · yt;

5. For every t ∈ {1, ..., T},
P

i∈I
¡
xit − eit

¢
= yt.

Proof. This follows straightforwardly from lemma 1 and [7, Theorem 2], by an
argument identical to the one used by [1].

Again, because of its existential quantifiers, the previous characterization is
not an immediate test of the equilibrium hypothesis. As before:

Corollary 2. There exists a finite system, (R), of polynomial inequalities in¡
RLI++ × SL−1++

¢T × SI−1+ such that a sequence

µ³¡
eit
¢
i∈I , p

t
´T
t=1

, θ

¶
is ratio-

nalizable if, and only if, it satisfies (R).

Proof. This follows from the Tarsky-Seidenberg theorem, since the conditions
of the theorem constitute a semialgebraic set.

2.2 Nonrationalizable data

Remarkably, the same data set used by [1] and in the exercise with constant
returns to scale, will fail to be rationalizable in the present setting. For the sake
of definiteness, a specific numeric example is initially given.
Consider the following data set,5

e11 = (9, 1) e12 = (1, 9)
e21 = (1, 1) e22 = (1, 1)
p1 = (100, 1) p2 = (1, 100)

θ1 = 1 θ2 = 0

and suppose that it is rationalizable. Then, fix
¡¡
x11, x21, y1

¢
,
¡
x12, x22, y2

¢¢
such that:

π1 := p1 · y1 ≥ p1 · y2 (WAPM1)

π2 := p2 · y2 ≥ p2 · y1 (WAPM2)µ
p2 · x11 ≤ p2 · e12 + π2

p1 · x12 ≤ p1 · e11 + π1

¶
=⇒ x11 = x12 (WARP)

p1 · x11 = p1 · e11 + π1 (WL1,1)

p2 · x12 = p2 · e12 + π2 (WL1,2)

p1 · x21 = p1 · e21 (WL2,1)

p2 · x22 = p2 · e22 (WL2,2)

x11 + x21 = e11 + e21 + y1 (MC1)

5For notational simplicity, prices are not normalized here.
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x12 + x22 = e12 + e22 + y2 (MC2)

x11, x21 ≥ 0 (NN1)

x12, x22 ≥ 0 (NN2)

y11 > 0 =⇒ y12 < 0 (NFL)

In this case, the following claims would be true:

Claim 1. y11 ≥ y21 ≥ −2 and y22 ≥ y12 ≥ −2.
Proof. From WAPM1 and WAPM2, 100y11 ≥ 100y21 +

¡
y22 − y12

¢
≥ 100y21 +

1
100

¡
y11 − y21

¢
, so y11 ≥ y21 . That y

2
1 ≥ −2 follows from MC2 and NN2.

The other inequalities are proven similarly.

Claim 2. p2 · x11 < p2 · e12 + π2 and p1 · x12 < p1 · e11 + π1.

Proof. From WL1,1, notice that x111 = 1
100

¡
901 + π1 − x112

¢
, so

p2 · x11 =
1

100

¡
901 + π1 − x112

¢
+ 100x112

= 9.01 +
1

100
π1 +

µ
100− 1

100

¶
x112

= 9.01 +
1

100

¡
100y11 + y12

¢
+

µ
100− 1

100

¶¡
2 + y12 − x212

¢
≤ 208.99 + y11 + 100y

1
2

≤ 208.99 + y21 + 100y
2
2

< 901 + y21 + 100y
2
2

= p2 · e12 + π2

where the third equality follows from MC1, the first inequality from NN1 and
the second one from WAPM2.
The other inequality is proven similarly.

Claim 3. x11 6= x12.

Proof. By NFL, either y11 ≤ 0 or y12 < 0.
Consider first the case y11 ≤ 0, which implies, by the first claim, that y21 ≤ 0.

Then, by MC2, NN2 and the fact that y21 ≤ 0, we have that x121 = 2+y21−x221 ≤
2. On the other hand, by MC1

x111 = 10 + y11 − x211 ≥ 8− x211 ≥ 6.99,

where the first inequality follows from the first claim and the second one from
WL2,1 and NN1, which imply that x211 = 1

100

¡
101− x212

¢
≤ 1.01.

Now, suppose that y12 < 0. Then, by MC1 and NN1, x112 = 2 + y12 − x212 <
2− x212 ≤ 2, whereas

x122 = 10 + y22 − x222 ≥ 8− x222 ≥ 6.99,

which follows from MC2, the first claim, WL2,2 and NN2 (the last two imply
that x222 ≤ 1.01).
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Claims 2 and 3 imply that WARP is inconsistent with the rest of conditions
and, hence, that the data are not rationalizable.

2.3 Why?

The numeric example makes the case for refutability, but does not offer a clear
illustration of why this result is true. A graphic explanation is offered here.
Consider the original setup of an exchange economy. The reason why the

data are not rationalizable in that case is that (via nonnegativity constraints of
consumer 2) the sizes of the Edgeworth boxes make it impossible for individual
1 to satisfy WARP, given the positions of her (observed) budget lines, as shown
in the Figure 4.

[Figure 4]

With production, exchange may occur outside the original boxes and the
budget lines may be elsewhere. In order to rationalize the data in an economy
with production, one would like to be able to modify the Edgeworth boxes,
and/or displace individual 1’s budget lines, so that individual 1’s budget lines
intersect in the interior of one (or both) of the boxes. Graphically, the first
option would look like Figure 5, while the second option would look like Figure
6.

[Figure 5]

[Figure 6]

The added structure imposed by the assumption of individual rationality,
however, may suffice to make both options impossible.
First, profit maximization implies that any attempt to make the exchange

at
¡¡
e11, e21

¢
, p1
¢
occur at a taller (and hence narrower) box, will result in the

exchange at
¡¡
e12, e22

¢
, p2
¢
necessarily occurring at an even narrower box, and,

furthermore, there is a bound to how much narrower the box at
¡¡
e11, e21

¢
, p1
¢

can be made. This is illustrated by Figure 7: by profit maximization, y2 must lie
below the hyperplane normal to p2 through y1, and hence y21 < y11 . (Obviously, a
symmetric problem and bound will arise when attempting to make the exchange
box

¡¡
e12, e22

¢
, p2
¢
broader.)

[Figure 7]

The second choice would try to impose production levels consistent with
displacements of individual 1’s budget lines in opposite directions, for example
by introducing losses at

¡¡
e12, e22

¢
, p2
¢
and not at

¡¡
e11, e21

¢
, p1
¢
, as illustrated

before. Profit maximization with convexity and no free lunch, however, implies
that profits at both observations cannot differ by too much, as illustrated by
Figure 8: given y1, profits at

¡¡
e12, e22

¢
, p2
¢
can be neither too low (given by a

hyperplane below the lower hyperplane normal to p2 in the figure) nor too high
(given by a hyperplane above the higher hyperplane normal to p2).
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[Figure 8]

3 Concluding remarks

The results here show that the Walrasian hypothesis in economies with produc-
tion can be refuted upon observation of the ownership structure of the economy
and finitely many pairs of prices and endowments, and that for given, finite
cardinalities, it is characterized by a finite set of polynomial inequalities. This
is an extension of [1] to production economies. In terms of the introductory
discussion, the results show that introducing production weakens the implica-
tions of nonnegativity constraints, yet introduces additional structure via the
principle of profit maximization, which suffices for refutability. It remains to be
studied whether other technological assumptions allow for the same result.
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4 Appendix: Proof of the lemma

Proof. For necessity, the condition that, ∀t, t0 ∈ {1, ..., T}, pt · yt0 ≤ pt · yt is
obvious. Now, suppose that¡

∀ρ ∈ RL++
¢
(∃t ∈ {1, ..., T}) : ρ · yt > 0

Then, the system

ρ · y1 ≤ 0, . . . , ρ · yT ≤ 0, ρ ·
¡
−e1

¢
< 0, . . . , ρ ·

¡
−eT

¢
< 0,

where el, l = 1, ..., L, is the lth canonical vector in RL, has no solution (on ρ).

It follows from [9, Theorem 22.2] that there exist (αt)
T
t=1 ∈ RT+ and

¡
βl
¢L
l=1
∈

RL+\ {0} such that
TX
t=1

αtyt =
LX
l=1

βlel > 0.

It follows that (αt)
T
t=1 > 0 and, hence, by convexity, that

TX
t=1

αtPT
s=1 α

s
yt ∈ Y.

But
TX
t=1

αtPT
s=1 α

s
yt =

1PT
s=1 α

s

LX
l=1

βlel > 0,

which contradicts no free lunch.
For sufficiency, as in [11], let Y be the convex hull of set

ST
t=1

¡
yt − RL+

¢
,

which is nonempty, closed and convex. That ∀t ∈ {1, ..., T}, yt ∈ argmaxy∈Y p·y
follows from [11, Theorem 2]. To see that Y satisfies no free lunch, suppose

that y ∈ Y and y > 0. By construction, ∃ (eyt)Tt=1 ∈ QT
t=1

¡
yt − RL+

¢
and

(αt)
T
t=1 ∈ S

T−1
+ such that y =

PT
t=1 α

teyt, so, since ρ ∈ RL++,
0 < ρ · y = ρ ·

TX
t=1

αteyt ≤ ρ ·
TX
t=1

αtyt =
TX
t=1

αt
¡
ρ · yt

¢
≤ 0.
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