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We present an extension of Aumann’s Agreement Theorem to the case of multiple priors.
If agents update all their priors, then, for the Agreement Theorem to hold, it is sufficient
to assume that they have closed, connected and intersecting sets of priors. On the other
hand, if agents select the priors to be updated according to the maximum likelihood
criterion, then, under these same assumptions, agents may still agree to disagree. For the
Agreement Theorem to hold, it is also necessary to assume that the maximum likelihood
priors are commonly known and not disjoint. To show that these hypotheses are necessary,
we give several examples in which agents agree to disagree.
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In a celebrated paper, Aumann (1976) established the Agreement Theorem: if two agents have

the same prior belief over possible states of the world, and if their posteriors for an event are

commonly known by both, then these posteriors must be equal. In this sense, agents cannot

agree to disagree.1

Here, we investigate whether (or to what extent) this result extends to the case in which

there is ambiguity, in the sense that the prior beliefs of the agents are described by a set

of probability measures. Such a setting has been increasingly considered since the work of

Bewley (1986, 1987 and 2002) on Knightian uncertainty, and of Gilboa and Schmeidler (1989)

on maxmin expected utility.

We use the same definitions and set-up of Aumann’s seminal paper, but for the fact that

the two individuals have multiple priors. Since this feature implies that they may also have

multiple posteriors for a given event, it may be worthwhile to point out that we say that the

agents disagree if their sets of posterior distributions are disjoint, and agree to disagree if such

fact is common knowledge.
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1 Which implies that bets should not take place, other than for risk-sharing purposes (Milgrom and Stokey,

1982).
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Two possibilities for the way in which agents update their priors are considered: (i) full

Bayesian updating; and (ii) maximum likelihood updating. In the first case, the agents’ sets

of posteriors result from the Bayesian updating of all the distributions in their sets of priors:

agents do not use the information they receive to refine their sets of priors. The second approach

assumes that, once they receive their private information, they look at the priors that make

the information they have received most likely, and only update these “maximum likelihood”

priors.2

With agents updating all their priors, we present an Agreement Theorem which is essentially

a reformulation of those by Kajii and Ui (2005 and 2009). With respect to Kajii and Ui (2005,

Proposition 3), we replace the hypothesis of convexity of posteriors by connectedness of priors,

and show that it is not necessary to consider a common set of priors to prevent disagreement:

all that is necessary is that the sets of priors intersect. In fact, the more recent result by Kajii

and Ui (2009, Corollary 12) only requires the sets of priors to be not disjoint, but it also requires

the sets of posterior probability measures to be non-empty, closed and convex. Here, we only

assume that the sets of priors are closed, connected and not disjoint.3

However, under the same hypotheses, if agents are maximum likelihood maximizers, then it

is possible that they agree to disagree. We show this by way of several examples. In particular,

we show that even with a common set of priors and intersecting sets of likelihood maximizers,

the sets of posteriors may be commonly known but disjoint.4

In the context of a maxmin expected utility decision-maker, it is natural to assume that the

set of probability distributions that constitutes the individual’s beliefs is convex: preferences

of this type remain unchanged when a set of probabilities is replaced by its convex hull. And

since the convex hull of the set of posteriors that results from fully updating of a set of priors

is equal to the set of posteriors that results from fully updating the convex hull of the same

set of priors, in this context the convexity assumption used by Kajii and Ui (2005 and 2009)

is most natural. But the assumption need not always be plausible to impose: suppose that an

agent is to draw a ball from an urn that contains either one third of blue balls and two thirds

of red balls, or vice-versa. And, more importantly, in contexts other than maxmin expected

utility, the assumption of convexity is not innocuous. In any set-up in which preferences are

linear on probabilities, replacing a set of probabilities by its convex hull may be done without

loss of generality. But the latter is not the case, for instance, when an agent has variational

preferences as introduced by Maccheroni et al (2006), where a convex function on probabilities

renders a non-linearity.

With some qualification, if two individuals have maxmin expected utility preferences, then

the disjointness of posterior beliefs implies the existence of agreeable bets, as shown by Billot

et al. (2000) and Kajii and Ui (2006). In this note we do not consider the problem of betting,

nor do we claim that, under our definition, agents who agree to disagree will find a mutually

agreeable bet.

2 The case of maximum likelihood updating has received little attention in the economic theory literature,
in spite of its wide usage in statistics and econometrics.

3 On the other hand, the Agreement Theorem in Kajii and Ui (2009) allows for an arbitrary updating rule.
4 The body of literature that followed the seminal work of Aumann (1976) has neglected the search for cases

in which agents actually agree to disagree. This may occur, for instance, in a countable space of equiprobable
states of nature (Correia-da-Silva, 2010).
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1. The model

Denote by ∆ be the set of all probability measures defined over a finite measurable space (Ω,B).

There are two individuals, i = 1, 2, who are asymmetrically informed about such realization.

Let P1 and P2 be partitions of Ω; each partition represents the private information of the

corresponding agent.5

The two agents have ambiguous beliefs about the realization of the state and may differ in

these prior beliefs: individual i has a non-empty set ∆i ⊆ ∆ of prior probability distributions.

Suppose that these two sets of measures have the property that if E ∈ P1 ∨ P2, then p(E) > 0

for all p ∈ ∆1 ∪∆2.

For any state ω ∈ Ω, denote by Ei(ω) the event in Pi that contains ω; this is the event of

which agent i is privately informed when ω realizes. Similarly, let E(ω) be the event in P1 ∧P2

to which ω belongs. An event E is said to be common knowledge at ω if (and only if) E(ω) ⊆ E.

The argument of the following lemma is essentially given by Kajii and Ui (2005).

Lemma 1. Fix an individual i, an event A and a state ω ∈ Ω. Let Q be a nonempty subset of

the interval [0, 1], and let ∆̃ be a nonempty subset of ∆. If the event

{ω̃ ∈ Ω | {q | ∃p ∈ ∆̃ : p(A | Ei(ω̃)) = q} = Q}

is common knowledge at ω, then

{q | ∃p ∈ ∆̃ : p(A | E(ω)) = q} ⊆ [inf Q, sup Q].

Proof: By assumption,

E(ω) ⊆
{

ω̃ ∈ Ω |
{

q | ∃p ∈ ∆̃ :
p(A ∩ Ei(ω̃))

p(Ei(ω̃))
= q

}
= Q

}
.

Since E(ω) ∈ P1 ∧ P2, we can write E(ω) = ∪jE
j, for some collection {Ej}j ⊆ Pi, and it

follows that for all j, {
q | ∃p ∈ ∆̃ :

p(A ∩ Ej)

p(Ej)
= q

}
= Q.

Now, take any p ∈ ∆̃, let inf Q = ql and sup Q = qu, and note that, for each j,

ql ≤ p(A ∩ Ej)

p(Ej)
≤ qu,

so it is immediate that

ql
∑

j

p(Ej) ≤
∑

j

p(A ∩ Ej) ≤ qu
∑

j

p(Ej),

or, equivalently, that

qlp(E(ω)) ≤ p(A ∩ E(ω)) ≤ qup(E(ω)).

5 Denote by P1 ∨P2 the join of the two partitions, which is their coarsest common refinement. Their finest
common coarsening, or meet, shall be denoted by P1 ∧ P2.
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This implies that p(A | E(ω)) ∈
[
ql, qu

]
. Q.E.D.

The lemma will be the key step in the general results given later. It states that if it is

common knowledge that agent i’s set of posteriors is Qi, then the set of posteriors obtained

using only the common information is contained in [inf Qi, sup Qi].

2. Full Bayesian Updating

Let A be an event. An individual carries out full Bayesian updating6 if she updates all her

priors, given her private information. In this case, the set of posterior probabilities that agent

i attributes to the event A, in state ω̃, is

Qi(ω̃) = {q | ∃p ∈ ∆i : p(A | Ei(ω̃)) = q}.

Given a nonempty set Q ⊆ [0, 1], we say that it is common knowledge at state ω that the

set of posteriors of agent i is Q, if the event consisting of all states ω̃ ∈ Ω for which Qi(ω̃) = Q

is common knowledge at ω.

2.1. An Extension of Aumann’s Theorem

The following proposition extends Aumann’s Theorem (1976) to the case of multiple priors with

full Bayesian updating, strengthening the results of Kajii and Ui (2005 and 2009). It states

that if the two individuals have closed, connected and intersecting sets of priors, and their sets

of posteriors are common knowledge, then they cannot agree to disagree (in the sense that their

sets of posteriors intersect).

Proposition 1 (Aumann’s Theorem). Let ω ∈ Ω, and let Q1 and Q2 be nonempty subsets of

[0, 1]. Suppose that the sets of priors of the two agents, ∆1 and ∆2, are closed and connected.

If for both individuals it is common knowledge at ω that Qi(ω) = Qi, then

{q | ∃p ∈ ∆1 ∩∆2 : p(A | E(ω)) = q} ⊆ Q1 ∩Q2.

Proof: For each individual i, the mapping p 7→ p(A | Ei(ω)) is continuous over ∆i, by the

assumption that p(E) > 0 for all p ∈ ∆i and all E ∈ P1∨P2. Since ∆i is closed and connected,

it then follows that i’s set of posterior probabilities of A at ω, {q | ∃p ∈ ∆i : p(A | Ei(ω)) = q},
is a closed interval. Moreover, by the assumption that it is common knowledge at ω that

Qi(ω) = Qi,

E(ω) ⊆ {ω̃ ∈ Ω | {q | ∃p ∈ ∆i : p(A | Ei(ω̃)) = q} = Qi},
so, since ω ∈ E(ω), we have that

{q | ∃p ∈ ∆i : p(A | Ei(ω)) = q} = Qi,

and, hence, that Qi = [inf Qi, sup Qi]. By Lemma 1, it follows that p(A | E(ω)) ∈ Qi for all

p ∈ ∆i. Q.E.D.

Under the hypotheses of the proposition, it further follows that Q1 ∩ Q2 6= ∅, whenever

∆1 ∩∆2 6= ∅.

6 This is also referred to as Fagin-Halpern updating – see Kajii and Ui (2005).
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2.2. Agreeing to Disagree

The assumptions in Kajii and Ui (2005, Proposition 3) are that the individuals have the same

set of priors, and that the sets of posteriors for an event are closed intervals, while the related

result of Kajii and Ui (2009, Corollary 12), requires the sets of priors to be not disjoint, and the

sets of posterior probability measures to be non-empty, closed and convex. We only assumed

that the sets of priors are not disjoint, and that the sets of priors are closed and connected.

The following example shows that, without the connectedness condition, Proposition 1 does

not hold: agents can agree to disagree even when they share a common set of priors.

Example 1. Let the set of possible states of nature be Ω = {ω1, ω2, ω3, ω4}; let the common set of

priors, ∆1 = ∆2 = ∆̄, consist of two probability measures, p1 = (1
2
, 0, 1

2
, 0) and p2 = (0, 1

2
, 0, 1

2
);

and suppose that the information partitions are P1 = {{ω1, ω2}, {ω3, ω4}} and P2 = {Ω}.

Consider the event A = {ω2, ω3}. We want to show that even though the sets of priors

intersect (fully), and the sets of Bayesian posteriors are both (closed and) common knowledge

at any ω ∈ Ω, these latter sets are disjoint. First, note that for any ω̃ ∈ Ω, we have that

{q | ∃p ∈ ∆̄ : p(A | E1(ω̃)) = q} = {0, 1},

while

{q | ∃p ∈ ∆̄ : p(A | E2(ω̃)) = q} =

{
1

2

}
.

So, if we let Q1 = {0, 1} and Q2 =
{

1
2

}
, we have that both events

{ω̃ ∈ Ω | {q | ∃p ∈ ∆̄ : p(A | Ei(ω̃)) = q} = Qi}

are common knowledge at any ω ∈ Ω, yet Q1 ∩Q2 = ∅.7

3. Maximum Likelihood Updating

For each individual, let ∆i(E) = argmaxp∈∆i
p(E), for each E ∈ Pi. An individual uses

maximum likelihood updating if, at each state of nature, she updates only the priors that make

the information she has received most likely: at state ω, her set of posteriors is given by the

updating of priors that belong to ∆i(Ei(ω)) only.8 Abusing notation slightly, we will also write

∆i(ω) for the set ∆i(Ei(ω)).

As before, fix an event A. Unlike in the setting of a Bayesian individual, for one who uses

maximum likelihood updating we cannot define a set of posterior probabilities of A given the

individual’s information partition, for the set of priors that she updates changes with the event

she is informed of. At state ω, the set of posterior probabilities of A is

Qi(ω) = {q | ∃p ∈ ∆i(ω) : p(A | Ei(ω)) = q};
7 It continues to be true that {q | ∃p ∈ ∆̄ : p(A | E(ω)) = q} ⊆ [inf Q1, supQ1]∩ [inf Q2, supQ2], but without

connectedness this does not guarantee that {q | ∃p ∈ ∆̄ : p(A | E(ω)) = q} ⊆ Qi.
8 This type of updating is also known as Dempster-Shafer updating.
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that is, if q ∈ Qi(ω) ⊆ [0, 1], then there is some p ∈ ∆i that maximizes the probability of

observing Ei(ω) over individual i’s set of priors, and for which the posterior for event A, given

i’s information in state ω, is q.

Given a nonempty set Q ⊆ [0, 1], we will say that it is common knowledge at state ω that

the set of posteriors of individual i is Q if the event consisting of all the states ω̃ ∈ Ω for which

Qi(ω̃) = Q is common knowledge at ω.

3.1. Agreeing to Disagree

The following example shows that in the case of individuals who use maximum likelihood updat-

ing, the result of Proposition 1 does no longer hold: under the hypotheses of that proposition,

individuals who use maximum likelihood updating can agree to disagree.

Example 2. Let the set of possible states of nature be Ω = {ω1, ω2, ω3, ω4, ω5, ω6}, and let the

common set of priors, ∆1 = ∆2 = ∆̄, consist of the union of the two following sets of probability

measures:

∆a =

{
p =

(
0,

1

2
− x,

1

2
− x, 0, x, x

)
: 0 ≤ x ≤ 1

2

}
and

∆b =

{
p =

(
1

2
− x, 0, 0,

1

2
− x, x, x

)
: 0 ≤ x ≤ 1

2

}
.

Suppose that P1 = {{ω1, ω2}, {ω3, ω4}{ω5, ω6}} and P2 = {{ω1, ω2, ω3, ω4}, {ω5, ω6}} are the

information partitions.

Note that when ω ∈ {ω1, ω2, ω3, ω4}, the set of likelihood maximizers is common to both

agents:

∆1(ω) = ∆2(ω) =

{(
0,

1

2
,
1

2
, 0, 0, 0

)
,

(
1

2
, 0, 0,

1

2
, 0, 0

)}
.

Moreover, the posteriors for event A = {ω1, ω3} are constant across {ω1, ω2, ω3, ω4}, and, there-

fore, common knowledge at any ω ∈ A, but, nevertheless, they do not intersect: Q1(ω) = {0, 1}
while Q2(ω) = {1

2
}.9

3.2. An Extension of Aumann’s Theorem

An extension of Aumann’s result is obtained for individuals who use maximum likelihood up-

dating, if (i) one strengthens the requirement of connectedness of the sets of priors to convexity,

and (ii) further assumes that the sets of likelihood maximizers are commonly known and in-

tersect. The first assumption is very standard in the literature. For the second assumption,

formally, given a nonempty set ∆̃ ⊆ ∆, we will say that it is common knowledge at state ω

that the set of likelihood-maximizers of individual i is ∆̃ if the event consisting of all the states

ω̃ ∈ Ω for which ∆i(ω̃) = ∆̃ is common knowledge at ω. Under these extra hypotheses, if the

sets of maximum likelihood priors intersect, then so do the sets of posteriors, if they are both

commonly known.

9 To make the example clearer, we have not required strict positivity of the probability distributions. The
same result would be obtained with ∆a =

{
p =

(
ε, 1

2 − ε− x,
1
2 − ε− x, ε, x, x

)
: ε ≤ x ≤ 1

2 − 2ε
}

and with ∆b

modified in the same way.
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Proposition 2. Let ω ∈ Ω, let Q1 and Q2 be nonempty subsets of [0, 1], and let ∆̃1 and ∆̃2

be nonempty subsets of ∆. Suppose that the sets of priors, ∆1 and ∆2, are closed and convex.

If, for both i, it is common knowledge at ω that agent i’s set of likelihood maximizers is ∆̃i and

that agent i’s set of posteriors for an event A is Qi, then

{q | ∃p ∈ ∆1(ω) ∩∆2(ω) : p(A | E(ω)) = q} ⊆ Q1 ∩Q2.

Proof: The proof resembles the argument given in the case of Bayesian updaters, so some

details can be omitted. For each individual i, note first that the mapping p 7→ p(A | Ei(ω)) is

concave over ∆i, so, since ∆i is convex, it follows that i’s set of likelihood maximizers, ∆i(ω),

is convex, and then, as in the proof of Proposition 1, that her set of posterior probabilities of

event A,

{q | ∃p ∈ ∆i(ω) : p(A | Ei(ω)) = q},

is a closed interval. Since it is common knowledge at ω that the set of likelihood maximizers is

∆̃i, we further have that for all ω̃ ∈ E(ω), ∆i(ω̃) = ∆̃i. By Lemma 1, then,

{q | ∃p ∈ ∆̃i : p(A | E(ω)) = q} ⊆ [inf Qi, sup Qi],

which implies that

{q | ∃p ∈ ∆i(ω) : p(A | E(ω)) = q} ⊆ Qi,

since it is common knowledge at ω that i’s set of likelihood maximizers is ∆̃i and her sets of

posteriors is Qi. Q.E.D.

Not surprisingly, the hypothesis that the sets of likelihood maximizers intersect is indis-

pensable for this result,10 but a general characterization for this condition remains an open

question. This characterization is complicated by the fact that these are the sets of maximizers

of different functions over different domains. But if one assumes one of these two features away,

it is easy to see that the structure of the problems gives, at least, partial answers. Suppose

that both individuals have the same set of priors, namely that ∆1 = ∆2 = ∆̄.11 In this case, a

necessary condition for p ∈ ∆1(ω) ∩∆2(ω) is that p must (also) solve the problem

max
p∈∆̄
{p (E1(ω) ∪ E2(ω)) + p (E1(ω) ∩ E2(ω))}.

To see that this is the case, note that if p ∈ ∆1(ω) ∩∆2(ω), then, by definition, for any p̃ ∈ ∆̄

it must be true that p(E1(ω)) ≥ p̃(E1(ω)) and p(E2(ω)) ≥ p̃(E2(ω)). But this means that

p (E1(ω) ∩ E2(ω)) + p (E1(ω) \ E2(ω)) ≥ p̃ (E1(ω) ∩ E2(ω)) + p̃ (E1(ω) \ E2(ω)) (1)

and

p (E1(ω) ∩ E2(ω)) + p (E2(ω) \ E1(ω)) ≥ p̃ (E1(ω) ∩ E2(ω)) + p̃ (E2(ω) \ E1(ω)) . (2)

If we then add these two inequalities, it follows that for any p̃ ∈ ∆̄, one has that

p (E1(ω) ∪ E2(ω)) + p (E1(ω) ∩ E2(ω)) ≥ p̃ (E1(ω) ∪ E2(ω)) + p̃ (E1(ω) ∩ E2(ω)) .

10 This can be seen by considering Example 4 below.
11 And suppose also that B is fine enough to allow for all the sets below to be measurable.
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On the other hand, sufficient conditions for the sets of likelihood maximizers to intersect

are also possible when the sets of priors coincide. For instance, if the setting is sufficiently

symmetric, in the sense that for all p ∈ ∆̄ it is true that p (E1(ω) \ E2(ω)) = p (E2(ω) \ E1(ω)),

then ∆1(ω) = ∆2(ω). This is because, again by construction, for any p ∈ ∆1(ω) and any p̃ ∈ ∆̄,

one has that Eq. (1) holds, and, hence, by the symmetry property, so does Eq. (2).

3.3. More Agreeing to Disagree

We now show that the additional hypotheses of Proposition 2 are necessary, by means of

examples. If the convexity assumption on the sets of priors is replaced by the weaker assumption

of connectedness, we already know that agents may agree to disagree: this was shown in

Example 2. Example 3 shows that even if the sets of priors are common, the posteriors are

commonly known and the sets of likelihood maximizers intersect, the sets of posteriors can be

disjoint.

Example 3. Let the set of possible states of nature be Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9},
let the common set of priors be ∆1 = ∆2 = ∆̄, for

∆̄ =

{
p =

(
x, x, x, y,

1

3
− x− y, y,

1

3
− x− y, y,

1

3
− x− y

)
: x, y ≥ 0, x + y ≤ 1

3

}
,

and suppose that the information partitions are

P1 = {{ω1, ω2, ω3}, {ω4, ω5, ω6, ω7, ω8, ω9}}

and

P2 = {{ω1, ω6, ω8}, {ω2, ω3, ω5}, {ω4, ω7, ω9}}.

Consider the event A = {ω2, ω3, ω6, ω7, ω8, ω9}. Depending on the state of nature, the sets

of maximum-likelihood priors of individual 1 are

∆1({ω1, ω2, ω3}) =

{(
1

3
,
1

3
,
1

3
, 0, 0, 0, 0, 0, 0

)}
or

∆1({ω4, ω5, ω6, ω7, ω8, ω9}) =

{
p =

(
0, 0, 0, y,

1

3
− y, y,

1

3
− y, y,

1

3
− y

)
: 0 ≤ y ≤ 1

3

}
,

but, in any case, her posteriors are the singleton set Q1 = {2
3
}. On the other hand, the sets of

maximum likelihood priors of individual 2 are

∆2({ω1, ω6, ω8}) =

{(
0, 0, 0,

1

3
, 0,

1

3
, 0,

1

3
, 0

)}
,

∆2({ω2, ω3, ω5}) =

{(
1

3
,
1

3
,
1

3
, 0, 0, 0, 0, 0, 0

)}
and

∆2({ω4, ω7, ω9}) =

{(
0, 0, 0, 0,

1

3
, 0,

1

3
, 0,

1

3

)}
.
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In any case, her posteriors for event A are all the singleton set Q2 = {1}. With both Q1 and

Q2 constant across the states in A, one has that these sets of posteriors are common knowledge

at ω2, and ∆1(ω2) ∩∆2(ω2) 6= ∅, but the two individuals, still, agree to disagree: Q1 and Q2

are disjoint.

Next, Example 4 will show a case in which agents agree to disagree even though their

information partitions are the same, their sets of priors intersect, and their sets of posteriors

are commonly known. In this case, the result fails because individuals update disjoint sets of

likelihood maximizers; while one should not expect individuals to agree in such situation, what

the example highlights is the possibility that such disagreement in priors can occur between

people whose information partitions are identical and whose original priors are not disjoint.

Example 4. Taking ∆a and ∆b as defined in Example 2, let ∆1 = ∆a and ∆2 = ∆b, and let

agent 2 have the same information as agent 1, with P1 = P2 = {{ω1, ω2}, {ω3, ω4}, {ω0, ω5}}.

When ω ∈ {ω1, ω2, ω3, ω4}, each agent has a single maximum likelihood prior:

∆1(ω) =

{(
0, 0,

1

2
,
1

2
, 0, 0

)}
and

∆2(ω) =

{(
0,

1

2
, 0, 0,

1

2
, 0

)}
.

Their posteriors for the event A = {ω2, ω3} are constant across {ω1, ω2, ω3, ω4} and are, as

before, common knowledge, but are completely opposite: Q1 = {1} while Q2(ω) = {0}.

Finally, it is worthwhile to observe that while the hypothesis that there is at least one

commonly likelihood maximizer that is commonly known is required for our conclusion that

the sets of (commonly known) posteriors intersect, this condition is not necessary from a logical

perspective. That is, while it is true that if, in addition to the hypotheses of Proposition 2,

one has that ∆1(ω) ∩ ∆2(ω) 6= ∅, then Q1 ∩ Q2 6= ∅, the former condition is not implied

by the latter: the following presents, straightforwardly, a case in which Q1 ∩ Q2 6= ∅ and

∆1(ω) ∩∆2(ω) 6= ∅, but where both Q1 and Q2 are commonly known while ∆1(ω) ∩∆2(ω) is

not.

Example 5. Let Ω = {ω1, ω2, ω3, ω4}, let the (common) set of priors be ∆1 = ∆2 = ∆̄, for

∆̄ =

{
p =

(
x, y,

1

2
− x,

1

2
− y

)
: x, y ≥ 0, x, y ≤ 1

2

}
,

and suppose that P1 = {{ω1, ω2}, {ω3, ω4}} and P2 = {Ω}.

Consider the event A = {ω2, ω3}. Note that the sets of likelihood maximizers for individual

1 are

∆1({ω1, ω2}) =

{(
1

2
,
1

2
, 0, 0

)}
or

∆1({ω3, ω4}) =

{(
0, 0,

1

2
,
1

2

)}
,
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but, in any case, the set of posteriors for event A is Q1 = {1
2
} at all ω. Individual 2 is

uninformed, so ∆2(Ω) = ∆̄, but her set of posteriors is also Q2 = {1
2
}. The sets of posteriors

are common and commonly known (since they are the same for all ω ∈ Ω), as are the sets

of priors. And while the sets of likelihood maximizers trivially intersect (since individual 2

cannot refine her set of priors), no common likelihood maximizer is commonly known, for

∆1({ω1, ω2}) ∩∆1({ω3, ω4}) = ∅ and agent 2 is uninformed.
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