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Abstract

We provide a selective survey of the recent literature on the empirical implications of individually
rational behavior in markets and games. We concentrate on work that develops empirical implica-
tions while making as few parametric assumptions as possible. We focus on two major themes: 1.
the testable restrictions on the equilibrium manifold and the identification of economic fundamen-
tals from the equilibrium manifold; and 2. the implications of the revealed preference theory of
individual behavior for aggregated data.
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1. Introduction

The standard for what is to be considered scientific knowledge has been a prominent topic
of debate in epistemology. Karl Popper argued that scientists should actively try to prove
their theories wrong, rather than merely attempt to verify them through inductive reasoning.
The Popperian postulate thus states that a scientific discovery ought to distinguish the theory
from its empirical implications and that the empirical implications should be contrasted to
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reality, in order for the theory to be corroborated (however, not verified) or refuted. If a
theory fails a test, and there exists no reasonable excuse that can itself be tested, then the
theory should be abandoned.

This “empiricist” position, often referred to as “falsificationism”, had been previously
exposed by Poincaré who, in 1908, wrote that3 “ . . .when a theory has been established, we
have first to look for cases in which the rule stands the best chance of being found at fault.”
This principle was introduced to economics by Paul Samuelson, for whom “meaningful
theorems” are hypotheses “. . .about empirical data which could conceivably be refuted”
(Samuelson, 1947, p. 4). It seems desirable to obtain testable implications from the equi-
librium concepts in economics, even if one considers the views of Popper to be an extreme.

General equilibrium models provide a way to analyze the interactions of individuals
and firms in a market economy. The basic components of a general equilibrium model
are fairly simple: agents maximize utility subject to a budget constraint, firms maximize
profits, and markets clear. It is clearly of interest to see how these essential components of
a general equilibrium model restrict market behavior; that is, one would like to know what
the empirical implications or the testable restrictions of this theory are.

The seminal work by Sonnenschein, Mantel, Debreu and others has had quite negative
implications for the existence of testable restrictions of competitive equilibrium (Shafer
and Sonnenschein, 1982). In particular, with a few qualifications, any compact set of prices
can be the set of equilibrium prices for some economy (Mas-Colell, 1977). A popular text-
book in microeconomic theory (Mas-Colell et al., 1995) categorizes these results as that
“ . . .anything satisfying. . . ” the very mild restrictions of the Sonnenschein–Mantel–Debreu
theorem “. . . can actually occur.” Recent research, however, has obtained more positive re-
sults regarding the empirical implications of general equilibrium theory. This work examines
different constructs, most notably, the equilibrium manifold rather than the market excess
demand function, and uses different techniques to obtain comparative statics, for example,
tools from the revealed preference theory. From a theoretical perspective, these results es-
tablish that general equilibrium theory is refutable, and thus has scientific meaning in the
Popperian sense. From an economic policy perspective, these results suggest that we do
not have to rely on empirical work that uses parametric specifications of preferences or
technologies, or other restrictive assumptions on the parameters of the model.

A related question is whether observable data allows for the identification of the unob-
servable fundamentals of the economy. The transfer paradox clearly illustrates the relevance
of this question: without any knowledge of the fundamentals, the actual effects of economic
policy may be opposite to the conjecture of policy makers and to their policy goals.

In this paper, we review some of the recent developments in this literature. We limit our
discussion to three distinct but closely related lines of research. InSection 2, we describe the
existence and derivation of testable restrictions of competitive equilibrium over finite data
sets.Section 3addresses the issue of identification of fundamentals from the equilibrium
outcomes. InSection 4, we describe testable restrictions of game-theoretic models. This is
not an exhaustive survey of all the topics related to observable implications of equilibrium
models. We rather hope to develop some of the important themes of the literature and expose
some interesting avenues for further research.

3 SeeZahar (2001).
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2. Testable restrictions on data

Influential work by Sonnenschein, Mantel, Debreu, and others suggests that the theory of
competitive equilibrium imposes essentially no testable restrictions on data (seeShafer and
Sonnenschein (1982), for an overview of this literature). This work has generally looked
for restrictions on the market excess demand function, which treats prices as exogenous
variables and endowments as fixed.

One of the major innovations ofBrown and Matzkin (1996)was to search for testable
restrictions on the equilibrium manifold, i.e., the graph of the Walrasian correspondence,
as defined byBalasko (1975). The equilibrium manifold is the set of ordered pairs of indi-
vidual endowments and prices such that the market excess demand function is zero for a
given set of utility functions. One could interpret the variation as an economy with changing
endowments over time (where each agent has a one-period decision making horizon), or
as a cross-section of different groups of traders with the same utility functions. Given the
logic of comparative statics, the equilibrium manifold is the appropriate construct to use to
study the testable restrictions of general equilibrium: the system’s exogenous variables—the
individual endowments—are allowed to vary to derive restrictions on the system’s endoge-
nous variables—the equilibrium prices. This is also the approach that Arrow and Hahn, and
in fact Walras, took in developing comparative statics results of the pure exchange model
when equilibrium is unique (Arrow and Hahn, 1971). Importantly, studying the implications
of the theory on the equilibrium manifold rather than on market excess demand expands
the potential data set, and thereby increases the likelihood of the existence of nonvacuous
testable restrictions.

Another major innovation of Brown and Matkzin was to search for testable restrictions
of the competitive equilibrium model over finite data sets. It is well known that restrictions
such as the Weak Axiom of Revealed Preference (WARP) do not aggregate; in addition,
Andreu (1982)shows that WARP alone will result in no restrictions on market demand
with a fixed income distribution on finite domains. Brown and Matzkin, however, use the
finiteness of data to motivate a set of different techniques for analyzing the complete set
of testable propositions a model can possess. They apply semialgebraic theory rather than
traditional comparative statics tools such as calculus. The methods are straightforward to
apply, lead to direct nonparametric tests applicable to potentially observable data sets, and,
importantly, do not rely on properties of the equilibria such as uniqueness or stability.

As a result of these innovations, Brown and Matzkin describe the complete set of testable
propositions of the pure exchange model on finite observations of the equilibrium manifold
and prove that these tests are nonvacuous. For the case of two agents and two observations
they derive the tests in the form of a finite set of polynomial inequalities over the data alone.
They also derive similar tests for the case of homothetic utility. Adding production to the
model, they describe the testable propositions of a Robinson Crusoe economy. In contrast,
Brown and Shannon (2000)find that local uniqueness and stability of equilibrium impose
no further restrictions on finite data sets beyond the competitive equilibrium restrictions.
That is, while equilibrium might be testable, local qualitative features of equilibrium are
not.

The results of Brown and Matzkin are based on classical revealed-preference theory
and, therefore, implicitly assume that individual preferences are invariant. Experimental
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evidence has convinced many psychologists of the importance of allowing preferences to
vary randomly, in an unobservable manner.Carvajal (2003b)has proved that even under
random utilities, the general equilibrium model has testable restrictions, whenever individual
income and probabilistic distributions of prices are observed.

The above results are based on multiple observations of static, one-period models.Kübler
(2003a)explores testable restrictions in a dynamic model and finds that if all individuals
have time-separable, expected utility preferences, the general equilibrium hypothesis is
falsifiable given aggregate data only. He also offers evidence that the restrictions are likely
to become vacuous if time-separability is not assumed.

There also exists applied theory on nonparametric testable restrictions.Snyder (1999)
derives testable restrictions of a model of efficient public good provision on aggregate-level
variables and individual income. Once again restrictions exist though key individual data
remain unobserved. In efficient public good provision there are price variables that are
inherently unobservable: Lindahl prices, which correspond to the marginal benefits of each
public good.

Carvajal (2003a)analyzes the testable restrictions of a Nash–Walras equilibria in which
there exist consumption externalities. He finds that restrictions do not exist unless the
individual consumptions of the externality good are observed and that even in that case, the
restrictions are very weak.

Various models of collective decision making within the household have been proposed.
A general approximation is given byChiappori’s (1988, 1992)collective rationality model,
which describes individually rational agents who achieve a Pareto efficient allocation within
the household. Issues concerning the testable restrictions of such a model are similar to
those of the competitive equilibrium model, as data is most likely to be observed at the
aggregate level (here, the household level). He finds testable restrictions can exist when
some individual level data, such as individual labor supplies, can be observed.

In this section, we describe in greater detail the above results. We first describe some re-
quired results from the revealed preference literature and semialgebraic theory inSection 2.1.
Brown and Matzkin’s results are presented inSection 2.2. We describe Carvajal’s results
on random utilities and Kübler’s work on dynamic models inSections 2.3 and 2.4respec-
tively. We then turn to the testable restrictions of more applied models: efficient public good
provision inSection 2.5; externalities in the Nash–Walras model inSection 2.6; and finally,
the collective rationality model of the household inSection 2.7.

2.1. Preliminaries

Definition 1. Suppose there are observations on prices and quantities〈pr, xr〉Rr=1. Then a
utility functionU(x) rationalizes the dataif U(xr) ≥ U(x) for all x such thatpr ·xr ≥ pr ·x.

Theorem 1 (Afriat). Given a data set〈pr, xr〉Rr=1, the following conditions are equivalent:4

• There exists a non-satiated utility function that rationalizes the data.

4 This statement of the theorem is due toVarian (1982).
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• The data satisfy“cyclical consistency”: pr · xr ≥ pr · xs, ps · xs ≥ ps · xu, . . . , and
pq · xq ≥ pq · xr together implypr · xr = pr · xs, ps · xs = ps · xu, . . . , andpq · xq =
pq · xr.

• There exist numbersVr, λr > 0, r = 1, . . . , R that satisfy the“Afriat inequalities”:
Vr ≤ Vs + λsps · (xr − xs) for r, s = 1, . . . , R.

• There exists a concave, monotonic, continuous, non-satiated utility function that ratio-
nalizes the data.

Varian (1982)showed that cyclical consistency is equivalent to the data satisfying the
Generalized Axiom of Revealed Preference (GARP), a generalized version of WARP. Thus,
we can also say that the data is rationalizable if and only if GARP is satisfied. Like cycli-
cal consistency, GARP is a condition on prices and quantities, and does not involve the
inherently unobservableV ’s or λ’s that appear in the Afriat inequalities.

The polynomial form of the restrictions results entirely from the assumption of finiteness
of data, not from any assumptions on the functional form of utility. There are versions of
Afriat’s theorem for stronger restrictions on utility functions as well.Matzkin and Richter
(1991)describe a modification of the Afriat inequalities that is equivalent to Houthakker’s
Strong Axiom of Revealed Preference (SARP), the transitive version of WARP, which
restricts demand to be single-valued;Chiappori and Rochet (1987)give restrictions for
smooth demand.Varian (1983)describes restrictions for separability and homotheticity.
There are also analogous conditions for profit maximization and cost minimization; e.g., the
Weak Axiom of Profit Maximization (WAPM) provides necessary and sufficient conditions
for profit maximizing behavior in the form of polynomial inequalities defined over a discrete
series of data.5

Thus, many of the basic building blocks of general equilibrium models have the feature
that testable restrictions will be polynomial in form. The finite polynomial form of these
conditions is important because it means semialgebraic theory can be applied to describe
the data that satisfy the restrictions.

A semialgebraic set is defined by a finite system of polynomial inequalities.6

Definition 2. A subsetΦ of Rm is a semialgebraic set if it is the finite union of sets of the
form: {x ∈ Rm : fi(x) = 0, i = 1, . . . , k; gj(x) > 0, j = 1, . . . , p} wherefi andgj are
polynomials with real coefficients.

Semialgebraic sets inRm can also be defined in terms of propositional algebraic sentences,
which are composed of: real constants,m real variables, arithmetic operators (+,−, ·, /),
binary relation operators(=, �=, >,<,≥,≤), and Boolean connectives(¬,⇒,∧,∨). If
we add universal and existential quantifiers, (∀, ∃), ranging over the real numbers, we can
composeTarski sentences, which define subsets ofRm calledTarski sets.

The following theorem shows that given a Tarski set, we can always find an equivalent
semialgebraic set, i.e., the quantifiers can be eliminated.

5 For origins of WAPM seeVarian (1984).
6 These definitions and results are found inMishra (1993), also seevan den Dries (1988).
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Theorem 2 (Tarski–Seidenberg).Every Tarski set is a semialgebraic set and the quantifier-
free definition is derivable in finite time.

This process of deriving the quantifier-free definition referred to in the Tarski–Seidenberg
theorem is calledquantifier elimination. An implicit application of quantifier elimination is
seen in Afriat’s theorem when prices and consumptions are observed: the unobservedV ’s
andλ’s in the Afriat inequalities do not appear in the cyclical consistency condition, yet
both conditions describe equivalent restrictions on the observedp’s andx’s.

2.2. Testable restrictions of pure exchange

Consider a pure exchange economy withN agents each with preferences representable by
a nonsatiated utility functionUn over� commodities. Each agent has an initial endowment
ωn ∈ R�++. A feasible allocation is a set of consumption vectors{xn}Nn=1, with xn ∈ R�+,
such that

∑N
n=1 xn =

∑N
n=1 ωn. A competitive equilibrium is a feasible allocation{xn}Nn=1

and pricesp ∈ R�++ such that eachxn maximizesUn subject to the budget constraint
p · xn ≤ p · ωn.7

The following result is an adaptation of Brown and Matzkin’s result which describes the
restrictions the competitive equilibrium model places on discrete observations of prices and
individual endowments (the equilibrium manifold).

Theorem 3 (Brown and Matzkin, 1996). Let 〈pr, {ωr
n}〉Rr=1 be given. Then there exists a

set of continuous, monotone, and concave utility functions{Un} such that eachpr is an
equilibrium price vector for the exchange economy〈{Un}, {ωr

n}〉 if and only if the following
system is satisfied.

There exist numbersVr
n , λr

n, and vectors{xrn} such that:

• markets clear:
∑N

n=1 x
r
n =

∑N
n=1 ω

r
n, for r = 1, . . . , R;

• budget constraints are satisfied: pr · xrn = pr · ωr
n, for r = 1, . . . , R , andn = 1, . . . , N;

• xrn ≥ 0, λr
n ≥ 0, for r = 1, . . . , R, andn = 1, . . . , N.

• the Afriat inequalities are satisfied for all agents: Vr
n − Vs

n − λs
n p

s · (xrn − xsn) ≤ 0, for
r, s = 1, . . . , R, andn = 1, . . . , N.

The conditions can easily be rewritten for the case when individual incomes,Irn = pr · ωr
n,

and the aggregate endowment,ωr, are observed, rather than individual endowments. Also
note that these are the same restrictions we get on market demand when prices, aggregate
consumption, and individual endowments or incomes are observed, if we replace the sum
of individual endowments with the observed aggregate consumption vector. The difference
that prices are endogenous in a competitive equilibrium model and exogenous in a market
demand model turns out not to matter.8

7 For the rest of the paper,{xn} will be understood to mean the sequence{xn}Nn=1.
8 Compare this theorem also to Propositions 2 and 3 ofChiappori (1988), in which nonparametric testable

restrictions of household behavior are defined over (aggregate) household behavior and individual labor
supplies.
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Theorem 3describes competitive equilibrium behavior in terms of a finite set of poly-
nomial inequalities. Thus, Brown and Matzkin characterize equilibrium behavior as a
semialgebraic subset of the price-individual endowment space, in contrast to traditional
comparative statics, where one would derive local properties on a market demand/excess
demand function or an equilibrium mapping. For any given model and any given set of
observables, either the semialgebraic set defined by the testable restrictions would con-
tain all potential data, meaning the model was irrefutable for that set of observables, or it
would be empty, meaning equilibrium could never be obtained, or it would contain a strict
subset of all potential data. In the last case, we say the model is testable, or nonvacuous,
given the potential data set, and one could (theoretically) derive the testable restrictions on
observable variables.

Theorem 4 (Brown and Matzkin, 1996). The pure exchange model of competitive equilib-
rium is testable onR observations of prices and individual endowments〈pr, ωr

n〉.

The proof of this theorem depends on Brown and Matzkin’s counterexample show-
ing that there exist data that do not satisfy the conditions ofTheorem 3, as shown in
Fig. 1. There are two observations of a two-good, two-agent exchange economy. The figure
shows an Edgeworth box for each period, with the vertex agent 1’s origin. The feasi-
ble consumption bundles in period 1 and period 2 are along the segment of the budget
line betweena and b, and along the segment of the budget line betweenc and d, re-
spectively. Every consumption bundle agent 1 could have chosen in period 1 is revealed
preferred to every consumption bundle agent 1 could have chosen in period 2, and vice
versa. Thus, there are no feasible consumption bundles that could satisfy GARP for this
agent.

Fig. 1. Data not consistent with competitive equilibria.
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To apply the test inTheorem 3one must determine whether there is a solution to the
system given a realization of data. The Tarski–Seidenberg algorithm can be used to derive
the testable restrictions in terms of the observable variables alone. The tests would then be
in the form of checking the signs of a finite number of polynomial inequalities in the data.
The algorithm is doubly-exponential in practice, however, and thus not feasible for many
problems. Brown and Matzkin use the Tarski–Seidenberg algorithm to derive the testable
restrictions in terms of the observable variables alone for two observations of a two-agent
economy. Thus, data could be directly checked against a set of polynomial inequalities,
which they call the Weak Axiom of Revealed Equilibrium (WARE).

Given these positive results, we next ask what else is testable.Brown and Shannon (2000)
further consider which features of an equilibrium are refutable given a finite data set.

Theorem 5 (Brown and Shannon, 2000). Let 〈pr, ωr, {Irn}〉Rr=1 be given. Then there exists
a set of smooth, monotone, strictly quasi-concave utility functions{Un} and{ωr

n} such that
eachpr is an equilibrium price vector for the exchange economy〈{Un}, {ωr

n}〉 if and only if
there exists a set of smooth, strictly quasiconcave monotone utility functions{Un} such that
eachpr is a locally unique and locally stable under tatonnement equilibrium price vector
for the exchange economy〈{Un}, {ωr

n}〉, and for which the equilibrium correspondence
〈pr, ωr〉 is locally monotone for eachr.

Theorem 5is a striking result: while the assumptions needed to ensure local uniqueness
and stability are quite strong, if the data are consistent with any equilibrium, they are
consistent with an equilibrium with those features. Once again, it is key that data are finite:
finite data cannot be used to refute local characterizations of equilibrium.9

2.3. Random preferences

Consider an economy withN consumers and� commodities, which must be consumed
in nonnegative amounts. Prices are restricted to lie in the(� − 1)-dimensional simplex,
S�−1
+ . In order to define probability distributions on prices, the simplex is endowed with

a σ-algebra,Σ. For a setΩ ⊆ R�N++ of profiles of endowments, and for eachω ∈ Ω, a
probability measure over pricesχω : Σ→ [0,1] is observed.

Let U be the class of all continuous, strongly concave and strictly monotone utility
functions (onR�+) and denote byWU,ω the set of Walrasian equilibrium prices of the
economy〈{Un}, {ωn}〉, for eachU = {Un} ∈ UN and eachω = {ωn} ∈ R�N++.

A first contribution ofCarvajal (2003a)is the definition of consistency between a data set
〈Ω, (χω)ω∈Ω〉 and general equilibrium under random utility. Since preferences and prices
are random, one has to explain them via joint probability measures. Since endowments
matter for equilibrium prices, these joint distributions must be indexed by the observed
profiles of endowments. A weak definition of consistency of data and theory would then
require that for each observedω there exists a joint probability measure over preferences
and prices,10 πω : P(UN)×Σ→ [0,1], such that:

9 See alsoBalasko and Tvede (2002)andSnyder (2003).
10 The power set of any setA is denoted byP(A).
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• observed probabilities on prices are explained by the marginals (for prices) of the joint
theoretical probabilities: for eachω and each measurable set of pricesC ∈ Σ, χω(C) =
πω(U

N,C);
• the mechanism by which consistency holds indeed corresponds to Walrasian equilibrium,

in the sense that only Walrasian equilibrium prices can have positive probability: for each
set of profiles of preferences,V ∈ P(UN), and each measurable set of prices,C ∈ Σ,
πω(V, C) > 0⇒ ∃U ∈ V : C ∩WU,ω �= ∅.

In general, for a theory to impose empirical restrictions, one must assume some indepen-
dence of the fundamentals of the theory with respect to observed data. Otherwise, anomalies
found in the predictions of the theory could be explained by changes in the fundamentals.
In the cases ofBrown and Matzkin (1996), Snyder (1999)or Carvajal (2003a)it is assumed
that preferences do not depend on income. With the previous conditions only, no analogous
independence would hold here: for different observed profiles of endowments,ω andω′,
marginal distributions forU, πω(·,S�−1

+ ) andπω′(·,S�−1
+ ), which ought to be an invariant

fundamental, may differ. In order to rule out this possibility, Carvajal requires that, in addi-
tion to the previous two conditions, all the joint distributions have a common marginal for
utility: there exists a probability measure on preferences,ϑ : P(UN) → [0,1], such that
for all observedω, and every set of preferences,V ∈ P(UN), ϑ(V) = πω(V,S

�−1
+ ).

Under this stronger requirement, conditionals for prices are “random selectors” as in
Allen (1985). Also, this assumption allows us to rewrite the first condition as: for each
C ∈ Σ, χω(C) = ∫

UN πω|U(C)dϑ({U}).
For his results,Carvajal (2003b)considers the case in which there is a finite number of

states of nature, there is perfect observability of prices,Σ = P(S�−1
+ ), and all observed

distributions of prices have finite support. Formally, letΞ be the set of states of the world
and letF be the set of all probability measures onS (overΣ). Then, we have the following
definition.

Definition 3. A data set〈Ω, (χω)ω∈Ω〉 is rationalizable if there exists a probability measure
over states of nature,δ : P(Ξ)→ [0,1], a function that assigns profiles of preferences to
states of nature,U : Ξ → UN and a function assigning random selectors to economies,
ϕ : U[Ξ] ×Ω→ F, such that:

• observed probabilities are explained by theoretical probabilities:χω(C) = ∑
ξ∈Ξ δ(ξ)ϕ

(U(ξ), ω)(C), for ω ∈ Ω, andC ∈ Σ;
• this explanation is given via Walrasian equilibria:ϕ(U(ξ), ω)(WU(ξ),ω) = 1, for ξ ∈ Ξ,

andω ∈ Ω.

Carvajal’s main result is that, given a set of states of nature, the hypothesis that a data
set is rationalizable can be refuted. As in Brown and Matzkin, this result is obtained by
means of two other results: one that says that there exist conditions that are equivalent to
rationalizability and one that shows that these conditions are not tautologies.

Theorem 6 (Carvajal, 2003b). Suppose thatΞ andΩ ⊆ R�N+ are given. Suppose also that
for each ω ∈ Ω the set Supp(χω) ⊆ S�−1

+ is fixed and letΨ be the set of
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vectors((χω,p)p∈Supp(χω))ω∈Ω ∈
∏

ω∈Ω[0,1]#Supp(χω) such that the data set
{
Ω,

(
C �→∑

p∈C χω,p

)
ω∈Ω

}
is Ξ-rationalizable.11 Ψ is a semialgebraic set.

To understand this result, note that the observed variables are profiles of individual en-
dowments and one distribution of prices for each profile of endowments. This constitutes
the data set. The unobservable variables are profiles of individual preferences at each state
of the world, one probability for each state of the world, and one random selector for each
profile of endowments and each profile of utilities. This is the set of concepts whose ex-
istence (subject to the requirements for rationalizability) one is trying to determine. There
exists, however, a third category of variables: those which would be observable in a lab-
oratory where one could observe individual data and even run, repeatedly, counterfactual
experiments. These variables are a profile of individual demands for each profile of en-
dowments, each price vector and each state of the world; a joint distribution of individual
demands for each profile of endowments and each vector of prices; and a probability for
each observed price vector, for each profile of endowments and each state of the world.
The result is that these “observable-but-unobserved” variables must exist such that: the first
one satisfies SARP, individually, for each state of the world, across budgets; the second
one satisfies a version of SARP for random utilities, the Axiom of Revealed Stochastic
Preferences, first proposed byMcFadden and Richter (1990), and generalized byCarvajal
(2003a)for the case of collective decision problems; and the third one satisfies a random
version of market clearing, for every profile of endowments and state of the world (prices
that do not clear markets have zero probability).

Carvajal uses Tarski–Seidenberg quantifier elimination theory to prove the previous theo-
rem. As in cases mentioned before, this method does not imply the testability of the theory,
as it does not rule out the possibility that the condition is a tautology. Two independent
examples given by Carvajal show that, indeed, this is not the case.

Example 1 (Carvajal, 2003b). ConsiderFig. 1 and assume thatp1, p2 ∈ S�−1
+ . Suppose

that individual endowments consistent withω1 andω2 have been observed. Suppose further
that distributionsχω1 andχω2 have been observed such that Supp(χω1) ⊂ {p ∈ S�−1

+ :
p2 < p1

2}, and Supp(χω2) ⊂ {p ∈ S�−1
+ : p1 < p2

1}. This implies that all the prices that
have been observed to occur when the Edgeworth box isω1 give a steeper budget line for
agent 1 thanp1, while all the prices that have been observed underω2 give this individual a
flatter budget line thanp2. By the same arguments of the deterministic case, it follows that
all the prices in Supp(χω1) are inconsistent with all those in Supp(χω2) in the sense that,
even for a given state of nature, no consumption bundles for individual 1 can be consistent
with the standard axioms of revealed preferences. No data set with these features could be
rationalized, regardless of the number of states of the world.

Example 1illustrates a case in which it is impossible to find the first set of “observable-
but-unobserved” variables satisfying the conditions ofTheorem 6. Carvajal (2003b)also

11 The notationC �→∑
p∈C χω,p means that the functionχω : Σ → [0,1] is constructed as:∀C ∈ Σχω(C) =∑

p∈C χω,p.
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provides an example illustrating a similar impossibility for the other two sets of “observable-
but-unobserved” variables.

2.4. Dynamic problems

To make the problem dynamic, suppose that a treeΞ describes the evolution of na-
ture. Nodes of this tree will be denoted byξ, and can be understood as representing
date-events. The root of the tree will be denoted byξ0 and the set of terminal nodes by
ΞT. For eachξ ∈ Ξ\{ξ0}, let ξ− ∈ Ξ denote the predecessor node and letF(ξ) de-
note the set of its (immediate) successors.12 We will denote byX the number of nodes
in Ξ.

At eachξ ∈ Ξ, spot markets for all� commodities are open. In addition, there areJ

long-lived assets that can be traded at every node. LetS�−1
++ = {p ∈ R�++ : p1 = 1}. A

pricing rule for commodities is a functionp : Ξ→ S�−1
++ , wherepl(ξ) represents the price

of commodityl at nodeξ. Restricting prices to lie inS�−1
++ imposes the first commodity as

numeraire at every node. A pricing rule for assets isq : Ξ → RJ , whereqj(ξ) denotes
the price of assetj at nodeξ. The (real) return of assetj will be represented by a function
rj : Ξ → R, so thatrj(ξ) represents the return of the asset, in units of the numeraire, at
nodeξ. Given a nodeξ, r(ξ) will denote the vector(r1(ξ), . . . , rJ (ξ)) ∈ RJ .

Individual n has preferences represented by utility functionUn : R�X+ → R and his
endowment is denoted byωn : Ξ → R�+. For an economy with preferences{Un}, endow-
ments{ωn} and asset returns{rj}Jj=1, Kübler (2003a)defines an equilibrium as: prices for

commodities,p, and assets,q; individual consumptions{xn : Ξ → R�+}; and individual
portfolios{θn : Ξ→ RJ } that are consistent with market clearing and individual rationality.

Definition 4. Given an economy〈{Un, ωn}, {rj}〉, an equilibrium is(p, q, {xn, θn}) such
that:

• all markets for assets and commodities clear:
∑N

n=1 xn(ξ) =
∑N

n=1 ωn(ξ), for ξ ∈ Ξ;∑N
n=1 θn(ξ) = (0, . . . ,0), for ξ ∈ Ξ;

• all individuals are maximizing their utilities: for everyn, (xn, θn) solves the problem:
maxUn((x(ξ))ξ∈Ξ) subject to the constraintp(ξ) · x(ξ) + q(ξ) · θ(ξ) ≤ p(ξ) · ω(ξ) +
(q(ξ)+ r(ξ)) · θ(ξ−), for everyξ, with the convention thatθ(ξ−) = 0 whenξ = ξ0.

Given an asset structure(q, {rj}), there exist no arbitrage opportunities if it is impossible
to find a portfolio of assets that strictly increases wealth at some node, without decreasing
it at some other node. Formally, we have the following definition.

Definition 5. Asset prices and returns(q, {rj}) allow no arbitrage opportunities if there
does not exist a portfolioθ : Ξ→ RJ such that:

• at no node does wealth strictly decrease:θ(ξ−) · (q(ξ)+ r(ξ))− θ(ξ) · q(ξ) ≥ 0 for every
ξ ∈ Ξ;

12 Of course,ξ ∈ ΞT if and only if F(ξ) = ∅.
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• at some node wealth strictly increases:θ(ξ−) · (q(ξ) + r(ξ)) − θ(ξ) · q(ξ) > 0 for some
ξ ∈ Ξ.

It is well known that given an economy〈{Un}, {ωn}, {rj}〉 where preferences are mono-
tone, a necessary condition for(p, q, {xn, θn}) to be an equilibrium is that(q, {rj}) allow no
arbitrage opportunities; otherwise, individuals would find a portfolio with which they could
increase their levels of utility unboundedly. It is remarkable that equilibrium imposes no
further restrictions for a broad class of utility functions, even when individual endowments
and demands for commodities and assets are observed: given〈p, q, {ωn, xn, θn}, {rj}〉, if
(q, {rj}) allow no arbitrage opportunities (and all individual demands satisfy the budget
constraints at a binding level) then there exists, for each individualn, a strictly monotone
and strongly concave utility functionUn such that(p, q, {xn, θn}) is an equilibrium for
〈{Un}, {ωn}, {rj}〉. This result (Kübler, 2003a) can be easily understood: when only one
{ωn} is observed, revealed preference lacks all power.13 The fact that we are considering
a dynamic problem turns out to be irrelevant, given that it is not being used to restrict the
class of preferences.

The main contribution ofKübler (2003a)is to show that the result holds because the
class of preferences allowed in the rationalization is very broad. Indeed, when economists
deal with dynamic problems under uncertainty it is customary to make assumptions on
preferences that restrict, usually in a great manner, the class of preferences of individuals.
Kübler’s results are strong in the sense that they do not assume the observation of any
individual data, not even nominal income. He finds restrictions on the process that prices
may follow, given observed processes for returns and aggregate endowments. Kübler’s test
requires observation of whole stochastic processes, the values of all necessary variables on
and off the realized path.

Definition 6. A utility function U : R�X+ → R is a time-separable, expected-utility func-
tion if there exist functionsv : R�+ → R, π : Ξ → [0,1] andβ : Ξ → R++ such
that:

• v is strictly increasing, strongly concave, differentiable onR�++ and has interior contour
sets;

• for everyξ ∈ Ξ\ΞT,
∑

ξ′∈F(ξ) π(ξ′) = 1;
• for every consumption pathx, there exists a functionV : Ξ → R, such that∀ ξ ∈

ΞT, V(ξ) = v(x(ξ)); ∀ ξ ∈ Ξ\ΞT, V(ξ) = v(x(ξ)) + β(ξ)
∑

ξ′∈F(ξ) π(ξ′)V(ξ′); and
U(x) = V(ξ0).

Here v represents the state-independent instantaneous utility,π represents condi-
tional probabilities for the nodes of the tree, given their predecessors,β represents

13 Formally,Kübler (2003a)uses Farkas’ lemma (Rockafellar, 1970, Theorem 22.3.1) recursively to show that
if (q, {rj}) allow no arbitrage, then there exists a functionλ : Ξ→ R++ such thatq(ξ) =∑

ξ′∈F(ξ) λ(ξ′)(q(ξ′)+
r(ξ′)) for every ξ ∈ Ξ. Then, thisλ can be used to construct strongly concave and strictly monotone utility
functions, whose gradients with respect to consumption of commodities areλ(ξ)p(ξ), when evaluated atxn(ξ),
at all ξ.



A. Carvajal et al. / Journal of Mathematical Economics 40 (2004) 1–40 13

discounting andV , which can be described as “utility levels at nodes”, is defined
recursively.

Theorem 7 (Kübler, 2003a). Let a joint process〈p, q, {rj}, ω〉be given,wherep,q, and{rj}
are defined as before andω : Ξ→ R�+ represents aggregate endowments of commodities.
There exist individual preferences{Un}, all of which are time-separable, expected-utility
functions, such that prices(p, q) are equilibrium prices of the economy〈{Un, ωn}, {rj}〉,
for some distribution{ωn} of ω, if and only if, for each individualn there existxn : Ξ →
R�+, Vn : Ξ → R, λn : Ξ → R++, πn : Ξ → [0,1] and βn : Ξ → R++ such
that:14

• ∑
ξ′∈F(ξ) π(ξ′) = 1, for everyn andξ ∈ Ξ\ΞT;

• q(ξ)λn(ξ) = βn(ξ)
∑

ξ′∈F(ξ) πn(ξ
′)λn(ξ

′)(q(ξ′)+ r(ξ′)), for everyn andξ ∈ Ξ\ΞT;
• Vn(ξ) � Vn(ξ

′) + λn(ξ
′)p(ξ′) · (xn(ξ) − xn(ξ

′)), for everyn andξ, ξ′ ∈ Ξ; with strict
inequality if(xn(ξ) �= xn(ξ

′));15

• ∑N
n=1 xn(ξ) = ω(ξ), for everyξ ∈ Ξ.

Of course, the theorem alone does not make the case for falsifiability: there is, in
principle, the possibility that the quantified variables always exist, which would render
the equilibrium hypothesis unfalsifiable. The following example shows that it is not the
case.

Example 2 (Kübler, 2003a). Suppose that� = 1, J = 3 andX = 5. Suppose further that
all nodes but the root are terminal (as if there are two time periods, the second of which
is the end of the horizon):Ξ = {ξ0, ξ1, ξ2, ξ3, ξ4}, ΞT = {ξ1, ξ2, ξ3, ξ4}. For simplicity,
since we will necessarily have thatq(ξ) = (0,0,0) for all nodes other than the root, we will
denoteq = q(ξ0). Suppose that the ranges for probabilities and discounts are restricted so
that the following matrix is known:

7=




βn(ξ0)πn(ξ1)r1(ξ1) βn(ξ0)πn(ξ1)r2(ξ1) βn(ξ0)πn(ξ1)r3(ξ1)

βn(ξ0)πn(ξ2)r1(ξ2) βn(ξ0)πn(ξ2)r2(ξ2) βn(ξ0)πn(ξ2)r3(ξ2)

βn(ξ0)πn(ξ3)r1(ξ3) βn(ξ0)πn(ξ3)r2(ξ3) βn(ξ0)πn(ξ3)r3(ξ3)

βn(ξ0)πn(ξ4)r1(ξ4) βn(ξ0)πn(ξ4)r2(ξ4) βn(ξ0)πn(ξ4)r3(ξ4)




=




1 2 2

1 1 −1

1 −1 1

2 1 1




14 Formally, Kübler requires that the ranges ofπn andβn be restricted, respectively, to a strict subset of [0,1]
and a bounded subset ofR++.
15 When� = 1, this condition may be replaced by its equivalent: for everynandξ, ξ′ ∈ Ξ, (xn(ξ)−xn(ξ′))(λn(ξ)−
λn(ξ

′)) � 0, with strict inequality if(xn(ξ) �= xn(ξ
′)) (seeRockafellar, 1970, Theorem 24.8).
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(Notice thatR is common to all individuals. This assumes some homogeneity.) Letq =
(3,2,4).16 For anyγ ∈ R4++ such thatq = 7�γ, it is true thatγ1 = 1+ 2γ2. Now, take
anyω such thatω(ξ1) > ω(ξ2). By the fourth condition in the theorem, it must be that for
somen, xn(ξ1) > xn(ξ2). Suppose thatλn : Ξ → R++ is such that the first condition is
satisfied. Let

γ =




λ(ξ1)

λ(ξ0)

λ(ξ2)

λ(ξ0)

λ(ξ3)

λ(ξ0)

λ(ξ4)

λ(ξ0)




Sinceq = 7�γ, it follows thatλ(ξ1)/λ(ξ0) = γ1 = 1+ 2γ2 > γ2 = λ(ξ2)/λ(ξ0) > 0,
which implies thatλ(ξ1) > λ(ξ2) and, therefore,(xn(ξ) − xn(ξ

′))(λn(ξ) − λn(ξ
′)) > 0

which is a violation of the last condition of the theorem.

The message therefore is the following: when the class of preferences that is allowed is
“large” there are no restrictions, even if one observes individual consumptions; when the
class is restricted so that only time-separable expected-utility functions are allowed, the
general equilibrium hypothesis can be rejected on the basis of aggregate variables alone.
Even natural enlargements of the class of preferences destroy almost all empirical restric-
tions. In particular, if one allows an aggregator of instantaneous utilities more general than
the additive one required by expected utility,17 then the restrictions of the previous theorem
disappear (see Theorem 4.1 inKübler, 2003a). Kübler (2003b)examines the restrictions
imposed by Kreps-Porteus preferences, an alternative to time-separability, and finds similar
results: there are no testable restrictions, even on individual-level data, without additional
assumptions.

16 To see that(q, {r1, r2, r3}) allow no arbitrage opportunities, notice that

7�




1.2

0.1

0.9

0.4


 = q

and using footnote 13 andβn(ξ0)πn(ξ) > 0, we have


βn(ξ0)πn(ξ1)(1.2)

βn(ξ0)πn(ξ2)(0.1)

βn(ξ0)πn(ξ3)(0.9)

βn(ξ0)πn(ξ4)(0.4)


 ∈ R4

++

17 That is, if Definition 6 were relaxed to require that for some increasing and concavef : R2 → R, ∀ξ ∈
ΞT, V(ξ) = f(v(x(ξ)), 0), and∀ξ ∈ Ξ\ΞT, V(ξ) = f(v(x(ξ)),

∑
ξ′∈F(ξ) π(ξ′)V(ξ′)).
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The existence of nonvacuous testable restrictions also depends crucially on assumptions
concerning the stochastic structure of the individual income process.Krebs (2003)strength-
ens results byConstantinides and Duffie (1996)to show that in the presence of idiosyncratic
individual risk there are no restrictions on either macro data or on the firstN moments of
the cross-sectional distribution of consumption growth, even when the one-period utility
functions are known.

2.5. Public goods

A model of public competitive equilibriumFoley (1967, 1970)is used here. Consumers
behave competitively with respect to private goods. The public sector chooses public goods
and lump-sum taxes to finance them such that there is no other public sector proposal that
would be preferred by every individual. Foley proves that public competitive equilibria are
Pareto optimal, and that there exist prices and taxes such that, given endowments, a Pareto
optimal allocation is a public competitive equilibrium.

Formally, each consumernhas preferences over public and private goods represented by a
continuous, strictly monotonic, strictly quasi-concave utility functionUn(xn, yn), xn ∈ R�+
(private goods),yn ∈ RK+ (public goods). There is no free disposal:yn = y for n =
1, . . . , N. These assumptions will be critical for finding nonvacuous restrictions, in contrast
to Chiappori’s (1990)findings on aggregate demand for public goods.

Consumers have endowments of private goodsωn ∈ R�+ . These endowments can be used
to produce public goods and private goods, with net output of private goods represented by
z = x− ω.

Production technology is assumed to be constant returns to scale. The set of all technically
possible production plans isZ, a closed, convex cone. A feasible allocation is a set of vectors
({xn}, y) such that(x− ω, y) ∈ Z.

There exists a government that can purchase public goods for the use of the economy’s
members and that also has the power to tax members to pay for the public goods and
to redistribute income. Each consumer makes a tax payment (or receives a subsidy)
of τn.

It is straightforward to show that the equilibrium conditions of the model are the same as
the equilibrium conditions of a Lindahl equilibrium with transfers. Without transfers, each
individual must pay taxes based on their marginal benefit of the public good, the Lindahl
price:qn. In the following definition, note the distinction between monetary transfers (τn)
and full income transfers (Tn = qnyn − τn).

Definition 7. A public competitive equilibrium is a feasible allocation({xn}, y), prices
(p, q) 0, and taxes{τn} in which:

• each consumer solves the problem: max(xn,yn)Un(xn, yn) such thatpxn+qnyn ≤ pωn+
Tn;

• producers solve the problem: max(z,y)(p, q) · (z, y) such that(z, y) ∈ Z;
• the government chooses{τn} such that:q y = ∑N

n=1 τn, andτn = qnyn − Tn, for n =
1, . . . , N;

• public good restrictions are satisfied:yn = y, for n = 1, . . . , N, and
∑N

n=1 qn = q.
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Snyder (1999)describes the model’s complete set of testable propositions on finite data
in the form of a finite set of polynomial inequalities in observed and unobserved variables.
Thus, the data that satisfy the restrictions form a semialgebraic set. For two observations
of a two agent economy (labelleda andb), the restrictions can be written in terms of the
observables alone as follows.

Theorem 8 (Snyder, 1999). Let the collection〈xr, yr, pr, qr, ωr, Ira, I
r
b, τ

r〉 of non-negative
vectors of variables be given forr = 1,2. Let D1 = 〈xr, yr, pr, qr, Ira, I

r
b〉, D2 =

〈xr, yr, pr, qr, ωr〉, and D3 = 〈yr, pr, qr, ωr, Ira, I
r
b, τ

r〉. Then, there exist continuous,
strictly monotonic, strictly concave utility functions{Un} and a closed convex conical,
negative monotonic production setZ such that this data is consistent with a series of Public
Competitive Equilibria for the economy〈{Un},Z, {ωr

n}Rr=1〉, if and only if:

• D1 satisfy the following conditions: for somer, s = 1,2, r �= s, either, [H rs
a > Ira,

H rs
b > Irb and (pr, qr) · (xs − xr, ys − yr) > 0], or, [H rs

a > Ira, Hsr
b > Isb], where,

H rs
n = maxν,µprν + µ · (ys − yr) s.t.psν = Isn,0 ≤ ν ≤ xs,0 ≤ µ ≤ qr;

• D2 satisfy profit maximization and technology restrictions: 0= (pr, qr) · (xr−ωr, yr) ≥
(pr, qr) · (xs − ωs, ys), for r, s = 1,2, r �= s; and ifxr − ωr �= 0, thenxr − ωr � 0, for
r = 1,2.

• D3 satisfies the following constraints forr = 1,2: τr = qr yr, andIra + Irb = prωr − τr.

The restrictions are nonvacuous, as can be shown in the following counterexample, which
relates only to the demand side of the model.Fig. 2has the same interpretation asFig. 1, but
now with one private good and one public good. The agents have identical incomes, thus
the picture could represent either consumer’s constraints. We know the consumption vector

Fig. 2. Data not consistent with public competitive equilibria.
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of each consumer each period, marked 1 and 2. We know the price of the public good and
the private good, but we do not observe each agent’s Lindahl price, thus we do not know
the slope of the budget constraint each agent faces. Here the price of the public good is one,
thus each Lindahl price is in the range (0, 1), and together they sum to 1.

The limit-cases of the budget constraints are drawn in the figure. Note that for all feasible
Lindahl prices, the consumer’s period 2 consumption is revealed preferred to her period
1 consumption. Thus, the only way this consumer can satisfy WARP is if we choose the
Lindahl price in period 1 such that her period 1 consumption is not revealed preferred
to her period 2 consumption. For example, a Lindahl price close to 0 would satisfy this
requirement. This would imply the other consumer has a Lindahl price close to 1, however,
which means that consumer would fail WARP. With the data illustrated here, a Lindahl price
in period 1 of 1/2 is too high—at this price, period 1 consumption is revealed preferred
to period 2 consumption. But because the Lindahl prices must sum to 1, this means one
consumer will definitely fail WARP.

2.6. Externalities

Consider an economy withN � 2 consumers and� + 1 commodities, which must be
consumed in nonnegative amounts. There exist externalities in the sense that each individ-
ual is affected not only by his own consumption, but also by the consumption of one of
the commodities by all the other consumers. Formally, for each individualn, denote by
(xn, yn) ∈ R�+ ×R+ his own consumption and byy−n ∈ RN−1

+ the consumption of the last
commodity by the rest of the consumers. Each individualn has preferences represented by
Un : R�+ × R+ × RN−1

+ → R.
Given the set of agents, an economy is described by preferences,{Un}, endowments

of commodities other than the externality,{ωn}, and endowments of the externality,{κn},
all of which are assumed to be strictly positive. Given an economy,〈{Un}, {wr

n, κ
r
n}〉, a

Nash–Walras equilibrium is a vector(p, q, {xn, yn}) such that, for eachn, (xn, yn) max-
imizesUn(x, y, y−n) subject top · x + qy � p · ωn + qκn, and all markets clear, i.e.,∑N

n=1(xn, yn) =
∑N

n=1(ωn, κn).
The set of Nash–Walras equilibria of economyE is denoted byNW(E). Carvajal studies

whether or not the concept of Nash–Walras equilibrium imposes testable restrictions on
equilibrium prices. Formally, let NWPE(E) denote the projection of the set of Nash–Walras
equilibria of economyE, NW(E), into the space of prices and demands for the externality
and letNWP(E) denote the projection of the same set into the space of prices only.

Definition 8. Suppose that one observes a finite data set of prices, endowments and de-
mands for the externality,〈pr, qr, {ωn,r, κ

r
n, y

r
n}〉.18 Such set is consistent with Nash–Walras

equilibrium if for eachn there existsUn, continuous and satisfying that, everywhere iny−n,
Un(·, ·, y−n) is strictly monotone and strongly concave, such that for eachr, (pr, qr, {yrn}) ∈
NWPE(〈{Un}, {wr

n, κ
r
n}〉). Suppose now that demands for the externality are not observed.

18 Assuming that for eachr, all prices are strictly positive,
∑

n y
r
n =

∑
n κ

r
n and for eachn, endowments

are strictly positive, consumption of the externality is nonnegative and the budget constraint is not violated:
pr · ωr

n + qr(κ
r
n − yrn) � 0.
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The data set〈pr, qr, {ωr
n, κ

r
n}〉Rr=1 is consistent with Nash–Walras equilibriumif {Un} with

the same properties exist, such that(pr, qr) ∈ NWP(〈{Un}, {wr
n, κ

r
n}〉).

Carvajal’s main result is that, unless further conditions are imposed, restrictions of the
kind obtained byBrown and Matzkin (1996)do not survive the introduction of externalities.

Theorem 9 (Carvajal, 2003a). When individual consumptions of the externality are ob-
served, a data set〈pr, qr, {ωr

n, κ
r
n, y

r
n}〉 is consistent with Nash–Walras equilibrium if and

only if there existxrn ∈ R�+, Vr
n ∈ R, andλr

n ∈ R++ such that:

• for eachn andr, pr · xrn = pr · ωr
n + qr(κ

r
n − yrn);

• for eachn and for each pairr and r′ such thatyr−n = yr
′
−n, Vr′

n ≤ Vr
n + λr

n pr · (xr′n −
xrn)+ λr

n qr(y
r′
n − yrn), with strict inequality whenever(xr

′
n , y

r′
n ) �= (xrn, y

r
n);

• for eachr,
∑

n x
r
n =

∑
n ω

r
n.

Moreover, given a vectord = ({wr
n, κ

r
n, y

r
n})Rr=1 ∈ ((R�++ × R++ × R+)N)R there

exists a semialgebraic setP , a subset of(R�++ × R++)R, such that(pr, qr)
R
r=1 ∈ P if

and only if〈pr, qr, {ωr
n, κ

r
n, y

r
n}〉 is consistent with Nash–Walras equilibrium. The setP

may be a proper subset of(R�++ × R++)R.
Also, if individual demands for the externality are not observed, every data set〈pr, qr,

{ωr
n, κ

r
n}〉Rr=1 is consistent with Nash–Walras equilibrium.

In the second part of the theorem, the fact that the semialgebraic setP exists is obvious
from the Tarski–Seidenberg theorem, except that it may be proper on(R�++ × R++)R.
Again, as inBrown and Matzkin (1996), this results is obtained by means of an exam-
ple. In fact, one can easily find one such example using the one proposed by Brown and
Matzkin, as presented inSection 2.2here: suppose that endowments of commodities other
than the externality are as inFig. 1, that endowments of the externality are given such
that the aggregate amount is constant, and that observed individual demands are such
that agent 2 consumes all the externality. Prices are such that the projections of the bud-
get sets for individual 1 are like the lines depicted inFig. 1 and would be inconsistent
with Nash–Walras equilibrium as agent 1 could not satisfy WARP given nonnegativity of
consumption.

The example and, of course, the conditions themselves, however, show that the restric-
tions imposed by the equilibrium concept are extremely mild, since the conditioning of
revealed-preference restrictions to the actions of other consumers severely weakens the
predictive power of individual rationality. In a sense, these restrictions have zero measure:
the probability that randomly generated data are inconsistent with the equilibrium concept
is zero, whenever the measures used in the generation are nonatomic. From a practical
perspective, the restrictions are so weak that the theory appears unfalsifiable.

Moreover,Carvajal (2003a)exploits this weakness to argue the last part of the theorem.
When individual consumptions of the externality have not been observed, one cannot re-
ject the hypothesis that for every pair of observations at least two individuals changed
their demand for the externality (the argument given for this is constructive). Individ-
ual rationality becomes vacuous and preferences that rationalize the data set always
exist.
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Carvajal’s results, in fact, hold for a more general case, namely strategic externalities,
where the action that affects other people’s well being need not be consumption and, hence,
is not subject to budgetary considerations or aggregation. For this, it is assumed that these
actions have compact domains and that preferences satisfy one additional smoothness con-
dition (Lipschitz continuity).

All these results are subject to what class of preferences consumers are allowed to be
endowed with. Under further conditions imposed on this class, the restrictions obtained in
the first part of the theorem continue to be necessary, but sufficiency may fail, in which
case neither the observation that these restrictions are weak or the unfalsifiability of the
equilibrium hypothesis when individual demands are not observed need to be true. Indeed,
Carvajal (2003a)exhibits an instance of this: if weak separability of preferences on the bun-
dle of commodities other than the externality is imposed, restrictions a la Brown–Matzkin
are imposed by the Nash–Walras equilibrium concept.

2.7. Household behavior

A household is made up of two individuals,a andb. For n = a, b, each member can
supply some amount of labor,ln, in a market outside the household. LetT represent the fixed
amount of total time available to eacha andb; Ln = T − ln defines leisure consumption for
each individual. There is also a privately consumed goodX; let xn, a non-negative number,
denote each member’s consumption of the good. The price of the consumption good is
normalized to one. Consumption and labor choices are made given nonzero wages,wa,wb,
and non-labor household incomeI.

Assume first that each agent has preferences over only their own personal consumption.
Each agent has preferences representable by a nonsatiated utility functionUn(Ln, xn).

The exact mechanism for determining household consumption is left unspecified. Let an
income-sharing rulebe some functionη: η(wa,wb, I) = (Ia, Ib) such thatIa+Ib = I. Then
an allocation is Pareto efficient given{Ua,Ub, η} if each agent maximizes utility subject to
a budget constraintxn ≤ In + wnln.

Theorem 10 (Chiappori, 1988). Let 〈Xr, Ir, {wr
n, l

r
n}〉Rr=1 be given.19 Then there exist

strictly monotonic, strictly concave utility functions{Un} and an income-sharing rule{η}
such that the data are consistent with a Pareto optimal allocation within the household
〈Ua(La, xa), Ub(Lb, xb)〉 iff there exist numbers{xrn, Irn} such that:

• household aggregation conditions are satisfied: xra + xrb = Xr, andIra + Irb = Ir;
• individual budget constraints are satisfied: xrn = Irn + wr

nl
r
n for n = a, b;

• individuals satisfy the Strong Axiom of Revealed Preference(SARP);
• xra ≥ 0, xrb ≥ 0.

SARP here is defined in terms of choosing the consumption good and leisure given full
income. For two observations, SARP is:x2

n + w1
nL

2
n > x1

n + w1
nL

1
n or x1

n + w2
nL

1
n >

x2
n + w2

nL
2
n.

19 Assume that{Ir, wr
a, w

r
b} �= {Is, ws

a, w
s
b} for anyr �= s.
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Chiappori shows that these are nonvacuous tests. The tests are in the form of solving a lin-
ear programming problem.Snyder (2000)derives conditions over the observable variables
for the two-observation case by applying Fourier–Motzkin elimination. Fourier–Motzkin
elimination (sometimes called Fourier elimination) is a technique similar to Gaussian elim-
ination that can be applied to linear problems (seeDantzig and Eaves, 1973). In general, it
is doubly-exponential in computational time, but can be useful for small problems such as
this.

Theorem 11 (Snyder, 2000). Let 〈Xr, Ir, {wr
n, �

r
n}〉 for r = 1,2 be given. Then there ex-

ist strictly monotonic, strictly concave utility functions{Un} and income-sharing rule{η}
such that the data are consistent with a Pareto optimal allocation within the household
〈Ua(La, xa), Ub(Lb, xb)〉 iff the collective rationality nonparametric restrictions are satis-
fied:

• ∀r = 1,2, Xr = Ir + wr
a�

r
a + wr

b�
r
b;

• ∃r, s = 1,2, r �= s such that either(Xs + wr
aL

s
a > wr

aL
r
a andXr + ws

bL
r
b > ws

bL
s
b) or

(Xs+wr
aL

s
a+wr

bL
s
b > Xr+wr

aL
r
a+wr

bL
r
b andXs+wr

aL
s
a > wr

aL
r
a andXs+wr

bL
s
b >

wr
bL

r
b).

These restrictions are analogous to WARP as used to test the unitary model of util-
ity maximization. Snyder applies both these tests to data from the National Longitudi-
nal Survey and finds almost all households satisfy both tests—that is, there exist prefer-
ences such that households could be acting according to Chiappori’s collective rationality
model, but there also exist preferences such that households are acting as unitary rational
agents.

One could interpret these results as satisfaction of specification tests: given that the
data satisfy the collective rationality restrictions, one could proceed to further work with
this data that makes functional form assumptions and estimates sharing rules within the
household (seeDiewert and Parkan, 1983). However, these results once again illustrate
a general problem for nonparametric tests: while they may be nonvacuous, they are per-
ceived to be very weak. There is no general theory of the power of nonparametric tests,
thoughBronars (1987)andManser and McDonald (1988)suggest possible approaches.
There is no stochastic element built in to these tests, thus it is not clear how to interpret
rejections when we do see them.Varian (1985, 1990)discusses the interpretation of rejec-
tions when the stochastic element is assumed to be measurement error.Brown and Matzkin
(1998)address estimation issues that arise in a random utility model in a nonparametric
framework.

Chiappori (1988)also derives tests for the case when agents’ utility depends on the
other household member’s consumption or leisure. In this model, individual consumption
and leisure become public goods within the household. The tests are now in the form of
solving a bilinear programming problem: both Lindahl prices and the public good levels
(in particular, individual consumptions) are unobserved. He provides a counterexample to
show that the conditions are nonvacuous.Snyder (1999)derives testable restrictions over
the observables alone for two observations when agents are non-egoistic over individual
consumption (while leisure remains a private good).
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3. Identification

One interpretation of Brown and Matzkin’s results is that some of the structure imposed
by individual rationality is preserved upon aggregation. An ambitious task is the one of
determining whether or not all the structure imposed by individual rationality is preserved
upon aggregation; can one uniquely (up to observational equivalence) recover the prefer-
ences of all individuals from the observation of aggregate equilibrium outcomes? To address
this issue of identification, we no longer assume finite data sets; we rather take complete
functions or correspondences as given.

A first solution to this problem is provided byBalasko (1999), under the assumption
that the whole equilibrium manifold is known. Without any assumptions on the topolog-
ical properties of this set,20 Balasko exploits the fact that individual demand depends on
endowments only via the value of income, and shows that one can recover the aggregate
demand function from the manifold.

A criticism of Balasko’s approach is that knowledge of the whole manifold (in particular
of its boundary, where there is information about individual decisions) may be too much to
ask.Chiappori and Ekeland (1999a), Chiappori et al. (2000, 2002)andKübler et al. (2002)
solve the identification problem via differential analysis of relatively open subsets of the
equilibrium manifold. These papers also build upon the insight of Brown and Matzkin that
the variations in individual endowments lead to restrictions. As in Balasko, the main result
of this approach is that, in general, the answer to the identifiability question is positive:
under certain assumptions, one can uniquely recover (locally) individual preferences from
local knowledge of the equilibrium manifold.

Three ideas are behind this result. First, suppose that, following Brown–Matzkin, one
studies aggregate excess demand as a function of prices and individual endowments (or,
prices, income distributions and aggregate endowments). Then, when one changes the en-
dowment of only one individual, given that only his demand is to change, one can identify
his income effect. This, by itself, is an obvious source of tests of the general equilibrium
hypothesis. Second, under the assumption that income effects are significant enough, in
the sense that they allow for distinction between commodities, one can use them to iden-
tify the individual demands via the solution of a system of partial differential equations.
By well-known results, this identifies preferences up to ordinal equivalence. Third, if the
equilibrium manifold only, and not the aggregate excess demand function, is known, the
problem is more complicated; however, the previous ideas still work as a manifold can
only be an equilibrium manifold if there exists an aggregate excess demand function that
vanishes at every point of the manifold. Hence, (local) identification of individual income
effects is still possible.

All the above results are obtained in the standard framework of an exchange economy
under certainty. Using identification results fromGeanakoplos and Polemarchakis (1990),
Kübler et al. (2002)show that even with uncertainty and incomplete markets, one can
identify individual preferences from the equilibrium correspondence, under the assumption
on the significance conditions of income effects for commodities and also for assets (a

20 For this reason, it is more accurately called the graph of the equilibrium correspondence.
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condition that turns out to be stronger in this case than in the standard framework of exchange
economies).

In what follows, we discuss the above mentioned literature in a greater detail.Section 3.1
introduces the results on global identification, whileSection 3.2develops the main results
in the literature on local identification. The results for economies with uncertainty and
incomplete markets are then discussed inSection 3.3.

3.1. Global identification

Balasko (1999)analyzes identification using the following logic. Characterize aggregate
demand as a function of normalized prices and the profile of individual incomes. Then,
for each pair consisting of a price vector and a profile of individual incomes, one only
needs to find a point in the manifold that has that price vector and for which the profile of
endowments generates that profile of individual incomes. The sum of those endowments is,
by definition, equal to the value of the aggregate demand at the fixed prices and individual
incomes.

Theorem 12 (Balasko, 1999). The equilibrium manifoldE identifies the aggregate demand
functionX.

Notice that the above theorem determines aggregate demand but says nothing, at least
explicitly, about individual demands.21 The second result of Balasko shows that if one
knows the aggregate demand function over the whole ofS�−1

+ ×RN+ , crucially including the
boundary ofRN+ , then one can identify each individual demand just by letting the incomes
of all individuals but one, say then-th, be fixed at zero, and evaluating the aggregate demand
at all possible prices and incomes ofn.

Theorem 13 (Balasko, 1999). For each individualn, the aggregate demand functionX
identifies the individual demand functionxn.

It has not been assumed that individual demands are derived from optimization; any
process that generates demands satisfying homogeneity and Walras’ law will be recoverable
from the equilibrium manifold. However, if the process is derived from optimization, then
one can recover individual preferences, up to ordinal equivalence, from the manifold, as
individual demands are identifiable.

3.2. Local identification

Chiappori and Ekeland (1999a)consider the problem of the characterization of aggregate
excess demand as a function of both prices and individual endowments. The question that
they answer is whether or not one can uniquely recover individual demands, and hence

21 Recall that nothing has been assumed about the topological properties ofE. Balasko proves that ifE is closed,

then the associated aggregate demand function is continuous and that ifE is smooth in the interior ofS�−1
+ ×(

R
�+
)N

,

then the associated aggregate demand must be smooth in the interior ofS�−1
+ × RN+ .
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preferences, from the values that this function takes on the interior of its domain. To see
that this problem is far from being trivial, consider the following example.

Example 3 (Chiappori et al., 2000). Suppose thatN = � = 2 and that individual prefer-
ences are given byU1(x) = ln(x1− ε)+ ln(x2+ ε), andU2(x) = ln(x1+ ε)+ ln(x2− ε),
whereε = 0 is possible. Individual endowments are assumed to be high enough, so each
individual reaches the regions ofR2++ where his preferences are defined. Aggregate excess
demand is then

Z(p, (ω1, ω2)) = 1

2




∑2
n=1 pωn

p1∑2
n=1 pωn

p2


−

2∑
n=1

ωn

which does not depend onε. In the interior ofR2+, one cannot distinguish between small
enough values ofε (includingε = 0 as an irrefutable hypothesis).

It is necessary, therefore, to establish conditions on the preferences (demands) if a positive
result is to be found. For this, suppose that one has a smooth function mapping normalized
nonnegative prices and individual endowments into the space of commodities. As mentioned
before, derivative of this function with respect to the income (endowments) of one individual
identifies his income effect.

Formally, suppose that one observes a smooth aggregate excess demand function, which
depends on prices and on endowments of all individuals,Z : S�−1

+ × (R�+)N → R�, defined
as:Z(p, {ωn}) =

∑N
n=1 xn (p, p · ωn)−

∑N
n=1 ωn. By construction, the Jacobian ofZ with

respect toωn′ identifies the income effects of agentn′: Dωn′Z(p, {ωn}) = Dyxn′(p, p ·
ωn′)p

� − I, whereI denotes the identity matrix.

Lemma 1 (Chiappori and Ekeland, 1999a). For everyn′, there exists a unique function
an′ : S�−1

+ ×R+ → R� such thatDωn′Z (p, {ωn}) = an′(p, p ·ωn′)p
� − I, for eachp and

each{ωn}.

Walras’ law immediately imposes simple testable restrictions: by Engel aggregation,
p · an(p, p · ωn) = 1. What is more important, though, is that these income effects and
the conditions of homogeneity and Walras’ law can be used to solve for an individual
demand function that is unique up to a (restricted) function of prices only. That is, for
individualn, an defines a system of partial differential equations whose solution identifies a
zero-degree-homogeneous functionAn : S�−1

+ ×R+ →R�+, which satisfiesp ·An(p, I) =
I andxn(p, I) = An(p, I) + Bn(p), for some zero-degree-homogeneous functionBn :
S�−1
+ → R�, for whichp · Bn(p) = 0.
The difficulty is thatBn need not be unique, and hence the previous equation still remains

unidentified. However, under the null hypothesis of utility maximization, there must exist at
least one such functionBn such that the individual demand satisfies the Slutsky restrictions:
for everyj, k ∈ {1, . . . , �}, ignoring the arguments,
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∂Aj,n

∂pk

+ ∂Bj,n

∂pk

+ (Ak,n + Bk,n)
∂Aj,n

∂I
= ∂Ak,n

∂pj

+ ∂Bk,n

∂pj

+ (
Aj,n + Bj,n

) ∂Ak,n

∂I
.

The only remaining problem, then, is whether one can pin down theseBn functions. Under
the assumption of significance of the income effects, it is shown that these functions of prices
can be identified from the Slutsky equation for the two commodities, which thereby identifies
the individual demand. Note that first and second derivatives of the Slutsky equation with
respect to income yields the system


∂aj,n

∂I
(p, I) −∂ak,n

∂I
(p, I)

∂2aj,n

∂I2
(p, I) −∂2ak,n

∂I2
(p, I)




[
Bk,n(p)

Bj,n(p)

]
=




γn
k,j(p, I)

∂γn
k,j

∂I
(p, I)




where the functionγn
k,j : S�−1

+ × R+ → R2 is known, as it depends onan but not onBn.
Now, assume that the following condition holds.

Condition 1 (Regularity). For every individualn, and vector pricep, there existI ∈ R+
andj, k ∈ {1, . . . , �} such that:∣∣∣∣∣∣∣∣

∂2xj,n

∂I2
(p, I)

∂2xk,n

∂I2
(p, I)

∂3xj,n

∂I3
(p, I)

∂3xk,n

∂I3
(p, I)

∣∣∣∣∣∣∣∣
�= 0

Then, one can solve for the functionBn in a unique manner, since


∂aj,n

∂I
(p, I) −∂ak,n

∂I
(p, I)

∂2aj,n

∂I2
(p, I) −∂2ak,n

∂I2
(p, I)


 =




∂2xj,n

∂I2
(p, I) −∂2xk,n

∂I2
(p, I)

∂3xj,n

∂I3
(p, I) −∂3xk,n

∂I3
(p, I)




which identifiesBk,n(p) andBj,n(p), whereas, for eachl ∈ {1, . . . �}\{j, n} one can find,
from the Slutsky equations,

Bl,n(p) =
(
∂aj,n

∂I
(p, I)

)−1 (
γn
l,j(p, I)+

∂al,n

∂I
(p, I)Bj,n(p)

)

Identification, of course, occurs if the result obtained forBn(p) is independent of the
order in which its components are disentangled: that is, if there are more than one pair of
commodities that satisfy regularity, the result should not depend on the order of these pairs
used in the argument. This is guaranteed by a consistency condition imposed by Chiappori
and Ekeland, which is necessary under the assumption thatZ is the aggregate excess demand
for some economy.

In order to determine the strength of this positive result, it only remains to establish
the generality of the regularity assumption. Unless the demand system is really simplistic
(rank 1), Chiappori and Ekeland argue that the assumption holds generically on prices and
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endowments, which suffices for identification, via continuity, at all points where it does not
hold.

As it works with the aggregate excess demand function, this first approach byChiappori
and Ekeland (1999a)can be seen as a generalization of the Sonnenschein–Mantel–Debreu
problem. This approach however does not avoid the criticism about the assumption that
one can observe the aggregate excess demand everywhere in its domain, whereas under
the hypothesis of general equilibrium one can only observe this function precisely where it
vanishes.

This difficulty is overcome by focusing again on the equilibrium manifold. InChiappori
et al. (2000, 2002)this is done via the differential, local analysis of smooth manifolds.

Definition 9. A setE ⊆ S�−1
+ ×R�N+ is a smooth equilibrium manifold if for eachn, there

exists a smooth demand functionxn : S�−1
+ ×R+ → R�+, satisfying Walras’ law, such that

E = {(p, {ωn}) ∈ S�−1
+ × R�N+ : Z (p, {ωn}) = (0)�l=1}.

The problem now is whether one can uniquely recover the individual demands (pref-
erences) from a smooth equilibrium manifold, without pegging some of the individual
endowments at zero. Given the previous results, under the regularity assumption, it suffices
to note that for each individual, the equilibrium manifold identifies the income effectDIxn,
at least over some open subset ofS�−1

+ × R�++.

Theorem 14 (Chiappori et al., 2000). Let(p̄, {ω̄n}) be a regular point of a smooth equilib-
rium manifoldE. For eachn, there exists a unique functionan, defined on a neighborhood
of (p̄, ω̄n), such thatan(p, ωn) = DIxn(p, p · ωn).22

The point of this theorem is that for identification ofDIxn(p, p·ωn), it suffices to show that
DωnZn(p, ωn) has rank (�−1).23 For this, notice thatp�DωnZn(p, ωn) = p�(DIxn(p, p ·
ωn)p

�−I) = 0, while forq orthogonal top,DωnZn(p, ωn)q = (DIxn(p, p·ωn)p
�−I)q =

−q. This implies thatrank(DωnZn(p, ωn)) = �− 1.
Now, identification obtains as follows (given thatrank(DωnZn(p, ωn)) < �):

• One can find a direction in which infinitesimal perturbations ofωn, with prices fixed, do
not change the excess demand of individualn.

• Since prices are fixed, individual excess demands forn′ �= n do not change (onlyωn is
being perturbed).

• If the fixed prices constitute equilibrium for the initial endowments, such perturbations
must not (to a first order) take us out of the equilibrium manifold.

• We must be able to figure out one such direction of perturbation without knowingDIxn
or DωnZn. This is achievable from the manifold itself: one finds a direction of changes
in ωn in which the tangent space to the manifold is “flat” on prices (seeExample 4
below).

22 Specifically, functionan has, as its domain, the projection of some open neighborhood of(p̄, {ω̄n}) into the
space for(p, ωn). It maps intoR�. The last condition must hold for every(p, ωn)in the domain ofan.
23 An alternative proof is given byChiappori et al. (2002).
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Fig. 3. Original equilibrium.

• This direction defines a linear subspace∆n, of dimension at least one, such that forq ∈
∆n,DωnZn(p, ωn)q = 0. But, then, anyq ∈ ∆n\{0} impliesDIxn(p, p ·ωn′) = q/p�q,
wherep�q �= 0, becauseq �= 0.24

The latter givesasolution forDIxn(p, p·ωn), but does not imply its uniqueness. However,
sincerank(DωnZn(p, ωn)) = � − 1, it follows that∆n is indeed one-dimensional, from
whereDIxn(p, p · ωn) is uniquely recovered.

Example 4. The original equilibrium is shown inFig. 3: given endowmentsω = (ω1, ω2),
pricesp clear markets. Now considerFig. 4. Keeping prices atp, if one shocks the en-
dowment of consumer 1 by dω1, so thatω′1 is the new endowment, his demand changes to
x′1, but his excess demand remains constant:x1 − ω1 = x′1 − ω′1. This defines the linear
space∆1. If nothing changes for consumer 2, his excess demand also remains the same.
Letω′ = (ω′1, ω2). At ω′, with pricesp, the aggregate excess demand is the same as before:
zero. Hence, as shown inFig. 5, pricesp are also equilibrium at endowmentsω′.25

The problem then reduces to identifying individual demands from income effects. Un-
der the assumptions that for no individual or commodity are income effects constant as
income changes, and that for every individual there are two commodities for which the
(pseudo-)elasticities of the derivatives of their income effects with respect to income differ,
it is shown that individual demands can be uniquely recovered.

24 To see this, notice that ifp�q = 0, then,0 = DωnZn(p, ωn)q = [DIxn(p, p · ωn)p
� − I]q = −q.

25 This is just an illustration. Of course, this analysis should be differential.



A. Carvajal et al. / Journal of Mathematical Economics 40 (2004) 1–40 27

Fig. 4. Endowment shock.

The conclusion is, then, that the equilibrium manifold, in general, contains all the infor-
mation implicit in the utility maximization problem; there is no need for the observation of
individual decisions.

As this conclusion stands in sharp contrast with the wisdom that the profession de-
rived from the Sonnenschein–Mantel–Debreu literature, it is worthwhile to determine what

Fig. 5. New equilibrium.
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drives the difference. The intuition obtained fromBrown and Matzkin (1996)was that
information on individual constraints imposes restrictions on aggregate variables, with-
out observation of individual choices.Chiappori et al. (2002)confirm this intuition, using
results fromChiappori and Ekeland (1999b): given a smooth function mapping aggre-
gate endowments into prices, if the assumption that there are at least as many consumers
as there are commodities is acceptable, then one can never reject the hypothesis that
for some individual utility functions and perfectly egalitarian distribution of aggregate
income, the function maps the aggregate endowment into equilibrium prices. Data on
individual income appears then to be necessary for refutability of the equilibrium
hypothesis.

3.3. Uncertainty

As before, there areN individuals and� commodities,� ≥ 3. However, there are now
two periods, present and future; the future state of the world is uncertain and can be any one
amongstS finitely many possibilities. No consumption takes place in the present period,
but financial markets forJ many assets are open,J � 3. In the future period, assets yield
their returns and individuals obtain endowments of commodities, both of which may depend
on the realized state of the world. Also, subject to the value of their wealths, individuals
demand and consume commodities. At each state of the world, commodity 1 acts as a
numeraire.

Formally, the return of assetj in states is rj,s units of commodity 1. We denoterj =
(rj,1, . . . , rj,s)

�, whileRs = (r1,s, . . . , rJ,s). It is assumed that there are no redundant assets,
so that the vectorsr1, . . . , rJ are linearly independent (implicitly requiring thatJ � S). It
is also assumed that the first asset return is positive (r1 > 0) and that at every state of the
world at least one asset has non-null yield (Rs �= 0, for somes).

In the present period, individualn has no endowment of commodities, but is endowed
with a vectorφn ∈ RJ of assets. In the future period, individuals receive no assets; and
endowments of commodities in the future depend on the state of the world, i.e., ins,
endowment of individualn is ωn,s ∈ R�++.

Individualn has preferences over future consumption, considering all possible states of
nature:Un : R�S+ → R. These preferences are assumed to be additively separable: for
eachs, there existsvn,s : R�+ → R such thatUn((x1, . . . , xS)) =

∑S
s=1 vn,s(xs). Each

instantaneous utility,vn,s is assumed to be smooth, strictly monotone, strongly concave and
possessing interior contour sets.

As before,S�−1
++ = {p ∈ R�++ : p1 = 1}. Spot-market prices for commodities in states

areps ∈ S�−1
++ , which implies that commodity 1 is numeraire at all states. Asset 1 is also a

numeraire; so, prices of assetsq, are restricted to lie inSJ−1 = {q ∈ RJ : q1 = 1}.
Given prices(ps)

S
s=1andq and endowmentsφn and(ωn,s)

S
s=1, the problem that individual

n faces is: max(xs)Ss=1,θ
Un((x1, . . . , xS)) subject to the constraints thatq · θ ≤ q · φn and

that, for everys, ps · xs ≤ ps · ωn,s + Rsθ, where(xs)
S
s=1 represents consumption of

commodities andθ represents a portfolio of assets. This problem gives a unique interior
demand. Let(xn, θn) : S�−1

++ ×SJ−1×R�S++×RJ → R�S++×RJ denote the maximizer of this
problem.
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Associated to the above maximization problem, there are two more series of maximization
problems:

1. maxxvn,s(x) subject tops · x ≤ ps · ωn,s + Rsθ, for eachs, and eachθ ∈ RJ such that
ps ·ωn,s+Rsθ > 0. Let x̃n,s(ps, ωn,s, θ) denote the maximizer andVn,s(ps, ωn,s, θ) the
value of this problem.

2. maxθ∈RJ

∑S
s=1 Vn,s(ps, ωn,s, θ) subject toq · θ ≤ q · φn.

It is obvious that(x∗, θ∗) solves the original maximization problem if and only if at each
s, x∗s solves the problem in 1, givenθ∗, andθ∗ solves the maximization problem in 2.

Kübler et al. (2002)also impose the following condition.

Condition 2. For each individualn, preferences are such that:

• regularity on assets: at every point in the domain, there exist assetsj andj′, other than
the numeraire, such that the following matrix is non-singular:


∂2θj,n

∂φ2
1,n

(·) ∂2θj′,n

∂φ2
1,n

(·)

∂3θj,n

∂φ3
1,n

(·) ∂3θj′,n

∂φ3
1,n

(·)




• regularity on commodities: at each states and at every point in the domain, there ex-
ist commoditiesl and l′, other than the numeraire, such that the following matrix is
non-singular:


∂2x̃l,n,s

∂ω2
1,n,s

(·) ∂2x̃l′,n,s

∂ω2
1,n,s

(·)

∂3x̃l,n,s

∂ω3
1,n,s

(·) ∂3x̃l′,n,s

∂ω3
1,n,s

(·)




• at each states and every point in the domain, the vectorsx̃n,s(·) andDω1,n,s x̃n,s(·) are
linearly independent.

• at every point in the domain and for every states,

(Dqθn(·)+Dφ1,nθn(·)(θn(·)− φn)
�)R�s �= 0

The first two parts of the above condition are analogous to the regularity condition of the
deterministic case; income effects are significant enough in the sense that at least a pair of
assets or commodities, in each state of nature, can be distinguished. The third part, namely,
demands for commodities and their income effects are linearly independent, rules out some
preferences (e.g. homothetic) but holds generically when income effects are not constant
(Kübler et al., 2002). The fourth part implies that substitution effects of the demand for
assets affect the conditional demands for commodities in all states via the returns of assets.

Let (x, θ) : (S�−1
++ )S × SJ−1×R�SN++ ×RJN→ R�S+ ×RJ denote the aggregate demand:

(x, θ)(p, q, {ωn}, {φn}) =
∑N

n=1(xn, θn)(p, q, ωn, φn).



30 A. Carvajal et al. / Journal of Mathematical Economics 40 (2004) 1–40

Also defineDs = {(p, {ωn}, {θn}) ∈ S�−1
++ × R�N++ × RJN : ∀n, p · ωn + Rsθn > 0}, for

eachs, and letx̃s : Ds → R�+ denote the conditional aggregate demand in states and be
defined byx̃s(p, {ωn}, {θn}) =

∑N
n=1 x̃n,s(ps, ωn, θn).

Theorem 15 (Kübler et al., 2002). The aggregate demand for assetsθ, identifies the indi-
vidual demand functions for assets, {θn}.

The argument that proves this result is similar to the one used in the deterministic
case in exploiting the income effects and regularity on assets. Similarly, using the con-
dition of regularity on commodities, the following theorem follows from the deterministic
results.

Theorem 16 (Kübler et al., 2002). For each state of natures the conditional aggregate
demand, x̃s, identifies the individual demand functions for assets, {x̃n,s}.

Kübler et al. go beyond these two results. Given the assumption of concavity of all utility
functions, they argue that each (unconditional) demand(xn, θn) identifies the conditional
demand̃xn,s for each state of the world, and hence conclude that(x, θ) identifiesx̃.

Corollary 1. The aggregate demand(x, θ) identifies the individual demand functions for
assets{θn}, and the conditional demands for commodities{x̃n,s}, for all statess.

This whole process can now be exploited for identification of preferences. Under
Condition 2, Proposition 1 inGeanakoplos and Polemarchakis (1990)implies that knowl-
edge of the individual demand functions for assetsθn, and the conditional demands for
commoditiesx̃n,s, is sufficient for identification of the utility functionUn up to cardinal
equivalence. Hence, the following corollary.

Corollary 2. The aggregate demand(x, θ) identifies the individual utility functions{Un},
up to cardinal equivalence.

As Kübler et al. point out, although the deterministic results imply that eachx̃s identifies
{vn,s}, these results only hold up to ordinal equivalence. Since non-affine transformations
cannot be distinguished, this does not identify{Un} (for which equivalence has to be car-
dinal). Indeed, it is necessary to knowθ, for the identification of preferences up to cardinal
equivalence.

The analysis of Kübler et al. goes even further. Define effective endowments as:

ω̃n =




ωn,0

ωn,1+ (1,0, · · · ,0)�R1 · θn
...

ωn,S + (1,0, · · · ,0)�RS · θn



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which accounts for the return of the endowment of assets. Define the equilibrium manifold
as

E= {(p, q, {ωn}, {φn}) ∈ (S�−1
++ )S × SJ−1× R�SN

++ × RJN : (x, θ)(p, q, {ωn}, {φn})

=
N∑

n=1

(ω̃n, φn)}

and for each states, and{θn}, define the conditional equilibrium manifold as

Es({θn}) = {(ps, {ωn,s}) ∈ S�−1
++ × R�N

++ : zs(ps, {ωn,s}, {θn}) =
N∑

n=1

ω̃n,s}

Kübler et al. claim that under the regularity assumption, manifoldE identifies the profile
of demands for assets{θn}, at least locally. Once that result is obtained, it is easy to see that
E also identifies all conditional manifoldsEs (·), and hence, by the deterministic arguments,
all the profiles of conditional demands{x̃n,s}, for all s.

Theorem 17 (Kübler et al., 2002). Let (p, q, {ωn}, {φn}) ∈ E be given. For each in-
dividual n, E identifiesUn, up to a cardinal equivalence, on an open neighborhood of
xn(p, q, ωn, φn).

4. Empirical implications of game-theoretic equilibrium concepts

We now turn to analyze the testable restrictions of aggregate behavior in a different setting,
namely, the game-theoretic model. There is no analog to the Sonnenschein–Mantel–Debreu
results here. The literature has been quite silent on this problem until a number of recent
papers appeared (Zhou, 1997, 2002; Sprumont, 2000, 2001; Bossert and Sprumont, 2002,
2003; Ray and Zhou, 2001; Carvajal, 2003a; Ray and Snyder, 2003). As in the general
equilibrium framework, this literature has built upon the existing revealed preference theory
as developed for individual-level data.

Almost half a century back, social-choice theorists looked at the notion of revealed
preference a laSamuelson (1938)in the context of individual choices. The question asked
was: given a series of observations of choices and choice sets, when can an individual’s
choices be rationalized by a preference ordering? From the work ofChernoff (1954), Arrow
(1959), Richter (1966), Sen (1971)and others, it is now well known that a choice function
(possibly set-valued) is rationalizable by a complete and transitive preference relation if and
only if it satisfies the so-calledα andβ conditions. The same question can naturally be asked
in the context of collective choices and of interactive decisions. Here one would observe
outcomes of game forms and determine if each player’s choices could be rationalized with
a preference ordering, given some concept of equilibrium play.

In this section, we describe the approaches of this emerging literature and some of its
results. We describe the basic problem inSection 4.1. Rationalization of Nash equilibrium
in normal forms and of subgame-perfect equilibrium in extensive forms are discussed in
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Sections 4.2 and 4.3, respectively.Section 4.4discusses the difference between Nash and
subgame-perfect rationalization whileSection 4.5addresses other solution concepts.

4.1. The general problem

The general problem under consideration in this literature takes the following form. Let
Γ be a collection of related game forms that several individuals play.26 Suppose that we can
observe an (or, possibly, a set of) outcome(s),O(G) for every game formG in Γ . What
conditions must the observed outcomes satisfy so thatO(G) coincides with the equilibrium
outcome (set) of a game associated withG, for everyG?

Notice that in this framework, as in individual choice theory, only outcomes are observed,
not the preferences of the players. From the observations, one has to construct preferences of
individuals so that the observed outcomes can be rationalized by the equilibrium notion with
these constructed preferences. Also, note that no restrictions are imposed on the preferences
(except that they must be orderings). Any restriction would indeed imply further conditions
for rationalizability of solutions.

Since in strategic situations players can move simultaneously or sequentially, and in each
case there are a variety of theoretical equilibrium concepts, we have a rich class of models
to investigate. Clearly, different structures of strategic interactions and different solution
concepts will have different implications on the observed outcomes.

A data set is a realization of the outcomesO(G) for every game formG. There is an
obvious distinction in the nature of the data sets observed in the simultaneous and the
sequential game forms. In extensive game forms, we assume that we observe outcomes
and not strategies (complete plans of actions), whereas in normal game forms, strategies
(equivalently, actions) are assumed to be observed. Thus, a data set in the extensive form
context has missing observations compared to the corresponding normal form data set. To
see this consider the data set from the game tree (and all reduced forms) as inFig. 6a. The
tree has two choice nodes; player 1 moves in the first node and has two choices, namely,
L andR. Player 2 moves in the second (after player 1 movesL) and also has two choices,
namely,l andr. Here, the game formG has three possible (non-trivial) reduced game forms,
denoted respectively byG1, G2 andG3 in Fig. 6a.

The corresponding normal game form obviously has a 2×2 structure as shown inFig. 6b.
There are four possible (non-trivial) reduced normal forms; three of them correspond toG1,
G2 andG3. Clearly, if we observe the outcomes in the tree, we do not observe the outcome
in G4, player 2’s choice of action when player 1 chooses to playR.

4.2. Nash behavior in normal game forms

Sprumont (2000)examines the testable restrictions of normal form games. Sprumont
considers finite sets of actions,Ai, one for each player,i; the product set,A, is called the
set of joint actions. A joint choice function,f , assigns to every possible subsetB of A a

26 Some of the symbols in this section have been used earlier in this paper to denote different notions. We are
allowing such duplications as we wish to keep standard notations used in the literature. We hope our readers will
not be confused.
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Fig. 6. Data sets in extensive and normal form.

non-empty set. A data set is a realization of a joint choice function. The joint choice function
f may not be singleton-valued.

A data set isNash rationalizableif there exist preference orderings onA such that for
everyB, f (B) coincides with the set of Nash equilibrium for the game defined by the set
of actionsB with those preferences. Nash behavior imposes nontrivial restrictions on the
data sets. To observe this, consider the following data set as shown inFig. 7 for the 2× 2
normal game form described inFig. 6b. It is easy to see that this outcome function is not
Nash-rationalizable. Since player 2 (strictly) prefers (R, r) to (R, l) in G4, and 1 prefers
(R, r) to (L, r) in G3, (R, r) must be a Nash equilibrium when all actions are available. Yet,
(R, r) is not selected byf in G.

Sprumont provides necessary and sufficient conditions for a data set to be Nash rational-
izable. A line is defined as a subset ofA that takes the form{(ai, a−i) | ai ∈ Ai}, wherei
anda−i are arbitrary but fixed. Let̃A denote the set of all non-empty subsets ofA which
are Cartesian products; a typical element ofÃ is written asB = ∏

i Bi. A choice function
f is defined over elements iñA.

For anyB, B′ ∈ Ã, denote byB ∨ B′ the smallest set iñA that containsB ∪ B′.

Condition 3 (persistence under expansion). For allB, B′ ∈ Ã, f(B)∪ f(B′) ⊂ f(B∨B′).

Fig. 7. Data that are not Nash rationalizable.
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Fig. 8. Data not consistent with Subgame-perfection.

As the data set inFig. 7 suggests, this condition is a necessary condition forf to be
Nash-rationalizable. The condition by itself is, however, not sufficient. Sprumont provides
the following condition which is required as well.

Condition 4 (persistence under contraction). For allB, B′ ∈ Ã such thatB′ ⊂ B, f(B) ∩
B′ ⊂ f(B′). If, moreover,B is included in a line ofA andf(B)∩B′ �= φ, thenf(B′) ⊂ f(B).

Theorem 18 (Sprumont, 2000). Ann-agent joint choice function is Nash-rationalizable if
and only if it satisfies Persistence under Expansion and Persistence under Contraction.

4.3. Subgame-perfect behavior in extensive game forms

As a complement to the work ofSprumont (2000), Ray and Zhou (2001)consider situa-
tions in which the players move sequentially with perfect information. They fix an extensive
game form (tree)G with complete information. A reduced game form,G′, is obtained from
G by deleting branches ofG. For Ray and Zhou, the data are the outcomes of all pos-
sible reduced game forms. They look for necessary and sufficient conditions for a data
set to be rationalizable as the unique subgame-perfect equilibrium in every reduced game
form.

Consider for example the following two distinct data sets, as described inFig. 8a and b,
on the same game tree as inFig. 6a.

Clearly, neither of these data sets can be rationalized as subgame-perfect equilibrium.
The choice of player 1 to playR in the game formG is not subgame perfect as player 1
prefers the outcome (L, l) to R as revealed in the game formG2.
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An extensive game formG is a finite rooted tree with set of nodes,X, with a distinct
initial nodex0, and aprecedence functionp : X/x0 → X. If p(y) = x, thenx is called
an immediate predecessorof y. Also y is called animmediate successorof x, or y ∈ s(x).
Let S(x) denote the set of all successors ofx. A nodez is called a terminal node, or an
outcome, if there exists nox ∈ X such thatp(x) = z. The set of all terminal nodes isZ.
A pathρ is a finite sequence of nodes:(xk : k = 0, . . . , m) wherexk = p(xk+1) for each
k andxm is a terminal node. A path leading to a terminal nodexm, ρ(xm), can be uniquely
identified.

A reduced extensive game formG′ of an extensive game formG is an extensive game
form consisting of (I) terminal nodesZ′ ⊆ Z and (iI) all the non-terminal nodes that belong
to ρ(z′) for anyz′ ∈ Z. For each reduced extensive game formG′ and a non-terminal node
x ∈ X′/Z′, the subgame form beginning atx, G′x, is the reduced extensive game form
consisting of (I) terminal nodesZ′(x) = Z′ ∩ S(x) and (iI) all the non-terminal nodes that
belong toρ(z′) for anyz′ ∈ Z′ ∩ S(x).27

Given an outcome functionO, one can construct incomplete preference orderings for
players over the terminal nodes. Consider the paths that lead to two different terminal nodes
u andv. Take the playeri who has to play at the node where these two paths diverge. Player
i’s preference overu andv can be determined by his choice in the reduced game form
G′ which has only two terminal nodes,u andv. This incomplete order,Pi, for playeri, is
known as therevealed base relation. Formally, for anyu, v ∈ Z, let x be the node at which
the paths tou andv diverge. Ifx ∈ Xi, thenuPiv if and only if u = O(G′), whereG′ is the
reduced game form which has only two terminal nodes,u andv.

Ray and Zhou (2001)proposed three independent conditions that together turn out to be
necessary and sufficient for subgame-perfect rationalization.

Condition 5 (acyclicity of the revealed base relation). For each playeri, the revealed base
relation,Pi, is acyclic.

Under this condition,Pi actually can be extended, via Zorn’s lemma, to a strict preference
ordering onZ which is both complete and transitive.

If a terminal nodeu is the unique (subgame-perfect Nash equilibrium) outcome for a
reduced gameG′ andu is a successor ofx, thenu should also be the (subgame-perfect Nash
equilibrium) outcome for any subgameG′x of G′.

Condition 6 (internal consistency). For anyG′, if x is a predecessor ofO(G′), then
O(G′x) = O(G′).

Finally, if u is the unique (subgame-perfect Nash equilibrium) outcome of a game,
then at each nodex on the path leading tou, the player who moves atx should pre-
fer u to any other terminal node that could have been reached fromx had he moved
otherwise.

27 The subgame formG′x is the reduced game form consisting of the path fromx0 to x and the subgame below
the nodex.
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Condition 7 (subgame consistency). Consider anyG′, x ∈ X \Z andu = O(G′x). For any
y ∈ s(x) such thaty is not on the path tou andv = O(G′y), thenO(G′) = u, whereG′ is
the reduced-game form which has only two terminal nodes,u andv.

Clearly, the data sets inFig. 8a and bviolate this condition and therefore cannot be
rationalized as subgame-perfect equilibrium.

Theorem 19 (Ray and Zhou, 2001). An outcome function is subgame-perfect rationalizable
if and only if acyclicity of the revealed base relation, internal consistency, and subgame
consistency are all satisfied.

4.4. From Nash to subgame perfection

One would naturally be interested in the differences between the Nash and subgame-perfect
behavior in extensive games. As observed earlier, one cannot use Sprumont’s conditions for
Nash rationalization in extensive game forms by testing the conditions in the corresponding
normal game forms.

It is indeed possible to observe data on extensive game forms that are not rationalizable by
subgame-perfect equilibrium, yet can still be rationalized as Nash behavior. Consider once
again the data sets inFig. 8a and b. As described earlier, neither of these data sets satisfies
the subgame consistency condition of Ray and Zhou and therefore cannot be rationalized as
a subgame-perfect equilibrium. The data inFig. 8a, however, can be rationalized by a Nash
equilibrium. The choice of player 1 to playR in the game formG can be justified as a Nash
behavior on his part that assumes that player 2 would playr (although actually, player 2
prefers to playl when given the choice).28 The data inFig. 8bcan not be rationalized even
by Nash equilibrium as there is no choice of player 2 that would justify player 1’s choice
of playingR in the game formG.

Also, notice that, under the (revealed) preferences that rationalize the outcomes inFig. 8a,
the gameG has multiple Nash equilibria. There is a Nash equilibrium (indeed, subgame
perfect) outcome (L, l) in the game, which however, is not observed, as we assume that
only one outcome is observed in each reduced game form.

Ray and Snyder (2003)work on the difference between Nash and subgame-perfect be-
havior in data sets. They first provide a necessary and sufficient condition for partial Nash
rationalization; i.e., they rationalize the data in each reduced game as one of the possibly
multiple Nash equilibria. They provide a necessary and sufficient condition, calledextensive
form consistency, which compares the outcomes of a set of reduced extensive form games,
varying the set of feasible strategies for one player while the other players’ strategies are
fixed. Extensive form consistency also implies that the revealed base relation is acyclic.

In the data inFig. 8b, there are two strategies consistent with the given outcome in the
game formG, namely, (R, l) and (R, r); if we fix player 2’s strategy at eitherl or r, we
see from the outcomes of the reduced gamesG2 andG3, that player 1 prefers to play
L. Extensive form consistency is not satisfied here andR cannot be rationalized as Nash

28 This is precisely the case of “incredible threat” often used to show the difference between Nash and
subgame-perfect equilibrium.
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behavior in gameG. In the data set inFig. 8a, the condition is satisfied and the outcome in
gameG can be rationalized using the strategy profile (R, r).

Ray and Snyder then provide a condition,subgame-perfect consistency, which uses ob-
servations of reduced game outcomes that are proper subgames below a node. This con-
dition ensures that the strategies played are not only Nash but are also consistent with
subgame-perfect behavior.

The data set inFig. 8adoes not satisfy this condition because player 2 is active inG1,
which is a proper subgame ofG, and is observed to movel; under this circumstance, we
know fromG2, player 1 prefersL toR. Thus, the outcomeR in G violates subgame-perfect
consistency.

Subgame-perfect consistency together with extensive form consistency are necessary and
sufficient for subgame-perfect equilibrium rationalization. These two conditions together
are equivalent to Ray and Zhou’s conditions. The advantage of the Ray and Snyder condi-
tions are that they can be used to test for Nash alone and also to distinguish between Nash
and subgame-perfect behavior.

4.5. Other solution concepts

In the framework of normal game forms,Sprumont (2000)also discusses Pareto effi-
ciency as a solution concept. Interestingly, the outcome inFig. 7 is Pareto-rationalizable.
If both agents (strictly) prefer (L, l) to (R, r) and (R, r) to the remaining joint actions,
the Pareto optima for each pair of feasible sets do coincide with the reported choices. The
falsifiable implications of the Nash and Pareto hypotheses are therefore different. Sprumont
considers two-agent joint choice functions which select a single joint action from each
pair of feasible sets and proves that if any such function is Nash-rationalizable, it is also
Pareto-rationalizable. Also, every choice function is partially Pareto-rationalizable, even if
strict preferences are required.

Bossert and Sprumont (2003)add to this literature by exploring testable restrictions for
(Pareto) efficiency and individual rationality. To understand individual rationality, they use
the status quomodel as introduced byZhou (1997)and used byRubinstein and Zhou
(1997), andMasatlioglu and Ok (2003). They find a condition, namelyEND-congruence,
that is necessary for arbitrary domains. This property is also sufficient in two cases: (I)
when feasible sets under consideration coincide with the universal set; and (iI) for arbitrary
domains, when the cardinality of the universal set is smaller than 2(n+ 1).

In this research agenda it is generally required that the outcomes of all possible re-
duced trees be observable. There are many simple and interesting game situations, such as
dividing-a-dollar, in which the players have infinitely many strategies but practically only
finitely many observations can be made. Hence, one would like to know how to extend the
above results to such cases with only limited observations.Carvajal (2003a)attempts to
model such a situation and finds testable conditions.

The violation of all these necessary and sufficient conditions can also provide information
that one can use to form beliefs about the consistency of individual decision making within
games, and thereby rationalize outcomes with alternative hypotheses of behavior such as
multiple preference orderings. It would be interesting to find general results analogous to
Kalai et al. (2002)in this context.
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5. Conclusion

A broad set of research questions is involved in the study of the empirical implications of
markets and games. In our survey, we have explored only a small set of papers that provides
the background for much more work. We have limited our survey to focus on testability
and identification in competitive equilibrium, using a particular framework of analysis. We
have also described how this framework of analysis extends to game-theoretic models.

Our choice of topics very much follows and extends two research lines that appear in
the work of Brown and Matzkin: the testable restrictions of the equilibrium manifold, and
further the identification of economic fundamentals from the equilibrium manifold; and the
implications of the revealed preference theory of individual behavior for collective choice.

A common goal of the work we discuss is to describe a way to derive the positive
implications of models of collective behavior in a systematic way without making parametric
specifications or ad hoc assumptions. The aim is to try to derive restrictions of the most
basic form of the model itself. However, it is of course impossible to completely avoid
maintained hypotheses in testing. For example, in describing the testable implications of
the pure exchange model of general equilibrium, we assume that utility functions do not vary
over time, and that the agents are myopic. Whether these assumptions are less problematic
than the assumption of a particular functional form for utility remains to be determined.

As in the work in general equilibrium, the game theoretic literature uses an extension of
revealed preference theory to a collective choice situation; we get restrictions on collective
choice behavior, derived from restrictions on individual choice. What is however different
in the game theory literature discussed here is that there is no algorithm for deriving the
comparative statics results; they are derived by intuitions and proofs, not by “methods”.
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